Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Nature ; 627(8004): 564-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418889

RESUMO

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Assuntos
Biodiversidade , Florestas , Mapeamento Geográfico , Árvores , Modelos Biológicos , Especificidade da Espécie , Árvores/classificação , Árvores/fisiologia , Clima Tropical
2.
Glob Chang Biol ; 30(5): e17317, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747199

RESUMO

Each year, an average of 45 tropical cyclones affect coastal areas and potentially impact forests. The proportion of the most intense cyclones has increased over the past four decades and is predicted to continue to do so. Yet, it remains uncertain how topographical exposure and tree characteristics can mediate the damage caused by increasing wind speed. Here, we compiled empirical data on the damage caused by 11 cyclones occurring over the past 40 years, from 74 forest plots representing tropical regions worldwide, encompassing field data for 22,176 trees and 815 species. We reconstructed the wind structure of those tropical cyclones to estimate the maximum sustained wind speed (MSW) and wind direction at the studied plots. Then, we used a causal inference framework combined with Bayesian generalised linear mixed models to understand and quantify the causal effects of MSW, topographical exposure to wind (EXP), tree size (DBH) and species wood density (ρ) on the proportion of damaged trees at the community level, and on the probability of snapping or uprooting at the tree level. The probability of snapping or uprooting at the tree level and, hence, the proportion of damaged trees at the community level, increased with increasing MSW, and with increasing EXP accentuating the damaging effects of cyclones, in particular at higher wind speeds. Higher ρ decreased the probability of snapping and to a lesser extent of uprooting. Larger trees tended to have lower probabilities of snapping but increased probabilities of uprooting. Importantly, the effect of ρ decreasing the probabilities of snapping was more marked for smaller than larger trees and was further accentuated at higher MSW. Our work emphasises how local topography, tree size and species wood density together mediate cyclone damage to tropical forests, facilitating better predictions of the impacts of such disturbances in an increasingly windier world.


Assuntos
Tempestades Ciclônicas , Florestas , Árvores , Clima Tropical , Vento , Árvores/crescimento & desenvolvimento , Teorema de Bayes
3.
Ecol Lett ; 26(11): 1829-1839, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37807917

RESUMO

Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50 ), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< -2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.


Assuntos
Ecossistema , Árvores , Clima Tropical , Florestas , Madeira , Secas , Folhas de Planta , Xilema
4.
Ann Bot ; 131(7): 1051-1060, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36702550

RESUMO

BACKGROUND AND AIMS: Understanding shifts in the demographic and functional composition of forests after major natural disturbances has become increasingly relevant given the accelerating rates of climate change and elevated frequency of natural disturbances. Although plant demographic strategies are often described across a slow-fast continuum, severe and frequent disturbance events influencing demographic processes may alter the demographic trade-offs and the functional composition of forests. We examined demographic trade-offs and the shifts in functional traits in a hurricane-disturbed forest using long-term data from the Luquillo Forest Dynamics Plot (LFPD) in Puerto Rico. METHODS: We analysed information on growth, survival, seed rain and seedling recruitment for 30 woody species in the LFDP. In addition, we compiled data on leaf, seed and wood functional traits that capture the main ecological strategies for plants. We used this information to identify the main axes of demographic variation for this forest community and evaluate shifts in community-weighted means for traits from 2000 to 2016. KEY RESULTS: The previously identified growth-survival trade-off was not observed. Instead, we identified a fecundity-growth trade-off and an axis representing seedling-to-adult survival. Both axes formed dimensions independent of resprouting ability. Also, changes in tree species composition during the post-hurricane period reflected a directional shift from seedling and tree communities dominated by acquisitive towards conservative leaf economics traits and large seed mass. Wood specific gravity, however, did not show significant directional changes over time. CONCLUSIONS: Our study demonstrates that tree demographic strategies coping with frequent storms and hurricane disturbances deviate from strategies typically observed in undisturbed forests, yet the shifts in functional composition still conform to the expected changes from acquisitive to conservative resource-uptake strategies expected over succession. In the face of increased rates of natural and anthropogenic disturbance in tropical regions, our results anticipate shifts in species demographic trade-offs and different functional dimensions.


Assuntos
Tempestades Ciclônicas , Florestas , Árvores , Plantas , Plântula , Demografia , Clima Tropical
5.
BMC Oral Health ; 23(1): 465, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422668

RESUMO

BACKGROUND: Colonization of the oropharynx with gram-negative bacilli (GNB) is considered a negative prognostic factor in immunocompromised individuals. Hemato-oncologic patients represent a high-risk group due to their immunodeficiencies and associated treatments. This study aimed to determine the rates of oral colonization by GNB, associated factors, and clinical outcomes in patients with hematologic malignancies and solid tumors compared with healthy subjects. METHODS: We conducted a comparative study of hemato-oncologic patients and healthy subjects from August to October 2022. Swabs were taken from the oral cavity; specimens with GNB were identified and tested for antimicrobial susceptibility. RESULTS: We included 206 participants (103 hemato-oncologic patients and 103 healthy subjects). Hemato-oncologic patients had higher rates of oral colonization by GNB (34% vs. 17%, P = 0.007) and GNB resistant to third-generation cephalosporins (11.6% vs. 0%, P < 0.001) compared to healthy subjects. Klebsiella spp. was the predominant genus in both groups. The factor associated with oral colonization by GNB was a Charlson index ≥ 3, while ≥ 3 dental visits per year were a protective factor. Regarding colonization by resistant GNB in oncology patients, antibiotic therapy and a Charlson index ≥ 5 were identified as associated factors, while better physical functionality (ECOG ≤ 2) was associated with less colonization. Hemato-oncologic patients colonized with GNB had more 30-day infectious complications (30.5% vs. 2.9%, P = 0.0001) than non-colonized patients. CONCLUSION: Oral colonization by GNB and resistant GNB are prevalent in cancer patients, especially those with higher scores on the severity scales. Infectious complications occurred more frequently in colonized patients. There is a knowledge gap about dental hygiene practices in hemato-oncologic patients colonized by GNB. Our results suggest that patients' hygienic-dietary habits, especially frequent dental visits, are a protective factor against colonization.


Assuntos
Infecções por Bactérias Gram-Negativas , Neoplasias Hematológicas , Neoplasias , Humanos , Infecções por Bactérias Gram-Negativas/complicações , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Bactérias Gram-Negativas , Antibacterianos/uso terapêutico , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias Hematológicas/complicações
6.
Ecol Lett ; 25(12): 2637-2650, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257904

RESUMO

Considering the global intensification of aridity in tropical biomes due to climate change, we need to understand what shapes the distribution of drought sensitivity in tropical plants. We conducted a pantropical data synthesis representing 1117 species to test whether xylem-specific hydraulic conductivity (KS ), water potential at leaf turgor loss (ΨTLP ) and water potential at 50% loss of KS (ΨP50 ) varied along climate gradients. The ΨTLP and ΨP50 increased with climatic moisture only for evergreen species, but KS did not. Species with high ΨTLP and ΨP50 values were associated with both dry and wet environments. However, drought-deciduous species showed high ΨTLP and ΨP50 values regardless of water availability, whereas evergreen species only in wet environments. All three traits showed a weak phylogenetic signal and a short half-life. These results suggest strong environmental controls on trait variance, which in turn is modulated by leaf habit along climatic moisture gradients in the tropics.


Assuntos
Secas , Folhas de Planta , Clima Tropical , Filogenia , Folhas de Planta/fisiologia , Xilema
7.
New Phytol ; 235(3): 1005-1017, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608089

RESUMO

Rapid changes in climate and disturbance regimes, including droughts and hurricanes, are likely to influence tropical forests, but our understanding of the compound effects of disturbances on forest ecosystems is extremely limited. Filling this knowledge gap is necessary to elucidate the future of these ecosystems under a changing climate. We examined the relationship between hurricane response (damage, mortality, and resilience) and four hydraulic traits of 13 dominant woody species in a wet tropical forest subject to periodic hurricanes. Species with high resistance to embolisms (low P50 values) and higher safety margins ( SMP50 ) were more resistant to immediate hurricane mortality and breakage, whereas species with higher hurricane resilience (rapid post-hurricane growth) had high capacitance and P50 values and low SMP50 . During 26 yr of post-hurricane recovery, we found a decrease in community-weighted mean values for traits associated with greater drought resistance (leaf turgor loss point, P50 , SMP50 ) and an increase in capacitance, which has been linked with lower drought resistance. Hurricane damage favors slow-growing, drought-tolerant species, whereas post-hurricane high resource conditions favor acquisitive, fast-growing but drought-vulnerable species, increasing forest productivity at the expense of drought tolerance and leading to higher overall forest vulnerability to drought.


Assuntos
Tempestades Ciclônicas , Secas , Ecossistema , Florestas , Folhas de Planta/fisiologia , Árvores/fisiologia , Clima Tropical , Água/fisiologia
8.
New Phytol ; 234(5): 1664-1677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35201608

RESUMO

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.


Assuntos
Carbono , Clima Tropical , Biomassa , Temperatura , Madeira
9.
Glob Chang Biol ; 28(2): 463-479, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34697872

RESUMO

Deforestation often results in landscapes where remaining forest habitat is highly fragmented, with remnants of different sizes embedded in an often highly contrasting matrix. Local extinction of species from individual fragments is common, but the demographic mechanisms underlying these extinctions are poorly understood. It is often hypothesized that altered environmental conditions in fragments drive declines in reproduction, recruitment, or survivorship. The Amazon basin, in addition to experiencing continuing fragmentation, is experiencing climate change-related increases in the frequency and intensity of droughts and unusually wet periods. Whether plant populations in tropical forest fragments are particularly susceptible to extremes in precipitation remains unclear. Most studies of plants in fragments are relatively short (1-6 years), focus on a single life-history stage, and often do not compare to populations in continuous forest. Even fewer studies consider delayed effects of climate on demographic vital rates despite the importance of delayed effects in studies that consider them. Using a decade of demographic and climate data from an experimentally fragmented landscape in the Central Amazon, we assess the effects of climate on populations of an understory herb (Heliconia acuminata, Heliconiaceae). We used distributed lag nonlinear models to understand the delayed effects of climate (measured as standardized precipitation evapotranspiration index, SPEI) on survival, growth, and flowering. We detected delayed effects of climate up to 36 months. Extremes in SPEI in the previous year reduced survival, drought in the wet season 8-11 months prior to the February census increased growth, and drought two dry seasons prior increased flowering probability. Effects of extremes in precipitation on survival and growth were more pronounced in forest fragments compared to continuous forest. The complex delayed effects of climate and habitat fragmentation in our study point to the importance of long-term demography experiments in understanding the effects of anthropogenic change on plant populations.


Assuntos
Mudança Climática , Florestas , Demografia , Secas , Ecossistema , Clima Tropical
10.
Glob Chang Biol ; 28(2): 630-643, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34665911

RESUMO

Although deforestation remains widespread in the tropics, many places are now experiencing significant forest recovery (i.e., forest transition), offering an optimistic outlook for natural ecosystem recovery and carbon sequestration. Naturally regenerated forests, however, may not persist, so a more nuanced understanding of the drivers of forest change in the tropics is critical to ensure the success of reforestation efforts and carbon sequestration targets. Here we use 35 years of detailed land cover data to investigate forest trajectories in 3014 municipalities in the Brazilian Atlantic Forest (AF), a biodiversity and conservation hotspot. Although deforestation was evident in some regions, deforestation reversals, the typical forest transition trajectory, were the prevalent trend in the AF, accounting for 38% of municipalities. However, simultaneous reforestation reversals in the region (13% of municipalities) suggest that these short-term increases in native forest cover do not necessarily translate into persistent trends. In the absence of reversals in reforestation, forests in the region could have sequestered 1.75 Pg C, over three times the actual estimated carbon sequestration (0.52 Pg C). We also showed that failure to distinguish native and planted forests would have masked native forest cover loss in the region and overestimated reforestation by 3.2 Mha and carbon sequestration from natural forest regeneration by 0.37 Pg C. Deforestation reversals were prevalent in urbanized municipalities with limited forest cover and high agricultural productivity, highlighting the importance of favorable socioeconomic conditions in promoting reforestation. Successful forest restoration efforts will require development and enforcement of environmental policies that promote forest regeneration and ensure the permanence of regrowing forests. This is crucial not only for the fate and conservation of the AF, but also for other tropical nations to achieve their restoration and carbon sequestration commitments.


Assuntos
Sequestro de Carbono , Ecossistema , Biodiversidade , Carbono , Conservação dos Recursos Naturais , Florestas
11.
Glob Chang Biol ; 28(9): 2895-2909, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35080088

RESUMO

The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.


Assuntos
Mudança Climática , Clima Tropical , Biomassa , Demografia , Ecossistema
12.
PLoS Comput Biol ; 17(4): e1008853, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33914731

RESUMO

When Darwin visited the Galapagos archipelago, he observed that, in spite of the islands' physical similarity, members of species that had dispersed to them recently were beginning to diverge from each other. He postulated that these divergences must have resulted primarily from interactions with sets of other species that had also diverged across these otherwise similar islands. By extrapolation, if Darwin is correct, such complex interactions must be driving species divergences across all ecosystems. However, many current general ecological theories that predict observed distributions of species in ecosystems do not take the details of between-species interactions into account. Here we quantify, in sixteen forest diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) components of both conspecific and heterospecific between-tree interactions that affect the trees' distributions, growth, recruitment, and mortality. These interactions decline smoothly in significance with increasing physical distance between trees. They also tend to decline in significance with increasing phylogenetic distance between the trees, but each FDP exhibits its own unique pattern of exceptions to this overall decline. Unique patterns of between-species interactions in ecosystems, of the general type that Darwin postulated, are likely to have contributed to the exceptions. We test the power of our null-model method by using a deliberately modified data set, and show that the method easily identifies the modifications. We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we explore how similar analyses can be used to investigate details of many types of interactions in these complex ecosystems, and can provide clues to the evolution of these interactions.


Assuntos
Evolução Biológica , Florestas , Árvores , Análise por Conglomerados , Fenômenos Ecológicos e Ambientais , Modelos Biológicos , Filogenia
13.
Nature ; 529(7585): 204-7, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26700807

RESUMO

Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits--wood density, specific leaf area and maximum height--consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.


Assuntos
Fenótipo , Árvores/anatomia & histologia , Árvores/fisiologia , Florestas , Internacionalidade , Modelos Biológicos , Folhas de Planta/fisiologia , Árvores/crescimento & desenvolvimento , Madeira/análise
14.
Ecol Appl ; 31(7): e02414, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260786

RESUMO

Ensuring a sufficient and adequate supply of water for humans and ecosystems is a pressing environmental challenge. The expansion of agricultural and urban lands has jeopardized watershed ecosystem services and a changing climate poses additional risks for regional water supply. We used stream water quality data collected between 2000 and 2014, coupled with detailed precipitation and land cover information, to investigate the effects of landscape composition and short-term precipitation variability on the quality of water resources in the state of São Paulo, Brazil. The state is home to over 45 million people and has a long history of human landscape modification. A severe drought in 2014-2015 led to a major water crisis and highlighted the fragility of the regional water supply system. We found that human-dominated watersheds had lower overall water quality when compared to forested watersheds, with urban cover showing the most detrimental impacts on water quality. Forest cover was associated with a better overall water quality across the studied watersheds, with forested watersheds having low turbidity and high dissolved oxygen. High precipitation led to increased turbidity and fecal coliforms levels and lower dissolved oxygen in streams but these effects depended on watershed land cover. High precipitation diluted concentrations of nitrogen and dissolved solids in highly urbanized watersheds but exacerbated turbidity in pasture-dominated watersheds. Given the high costs of water treatment in densely populated regions, there is a pressing need to plan and manage landscapes in order to ensure adequate water resources. In tropical regions, maintaining or restoring native vegetation cover is a promising intervention to sustain adequate water quality.


Assuntos
Rios , Qualidade da Água , Brasil , Mudança Climática , Ecossistema , Monitoramento Ambiental , Florestas , Humanos
15.
Parasitol Res ; 119(2): 365-384, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31897789

RESUMO

We performed a systematic review of the literature published since 1900 about leishmaniasis a neglected vector-borne disease, focused on environmental and social risk factors for visceral (VL) and cutaneous leishmaniasis (CL) to better understand their impact on the incidence of disease. The search terms were "leishmaniasis" AND "risk factors" using Google Scholar, PudMed, and Scielo. We reviewed 177 articles, 95 studies for VL, 75 for CL, and 7 on both forms. We identified 14 categories of risk factors which were divided into three groups: socioeconomic (7), environmental (5), and climate (2) variables. Socioeconomic factors were also associated with disease incidence in vulnerable human populations of arid and tropical developing regions. Environmental and climate factors showed significant associations with the incidence of VL and CL in all the studies that considered them. Proximity to natural vegetation remnants increased disease risk in both the New and Old World while the climate conditions favorable for disease transmission differed among regions. We propose a common conceptual framework for both clinical forms that highlights networks of interaction among risk factors. In both clinical forms, the interplay of these factors played a major role in disease incidence. Although there are similarities in environmental and socioeconomic conditions that mediate the transmission cycle of tropical, arid, and Mediterranean regions, the behavior of vector and reservoirs in each region is different. Special attention should be given to the possibility of vector adaptation to urban environments in developing countries where populations with low socioeconomic status are particularly vulnerable to the disease.


Assuntos
Clima , Meio Ambiente , Leishmaniose Cutânea/epidemiologia , Leishmaniose Visceral/epidemiologia , Fatores Socioeconômicos , Animais , Vetores de Doenças , Humanos , Incidência , Leishmaniose Cutânea/transmissão , Leishmaniose Visceral/transmissão , Fatores de Risco
16.
Ecology ; 100(1): e02556, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30411805

RESUMO

Species composition and community structure in Neotropical forests have been severely affected by increases in climate change and disturbance. Among the most conspicuous changes is the proliferation of lianas. These increases have affected not only the carbon storage capacity of forests but also tree dynamics by reducing tree growth and increasing mortality. Despite the importance of lianas in Neotropical forests, most of the studies on lianas have focused on adult stages, ignoring dynamics at the seedlings stage. Here, we asked whether observed increases in liana abundance are associated with a demographic advantage that emerges early in liana ontogeny and with decreased precipitation and increased disturbance. To test this, we compared patterns of growth and survival between liana seedlings and tree seedlings using a long-term data set of seedling plots from a subtropical wet forest in Puerto Rico, USA. Then, we examined the effect of precipitation and land use history on these demographic variables. We found evidence for liana seedling survival advantage over trees, but no growth advantages. This survival advantage exhibited significant temporal variation linked with patterns of rainfall, as well as differences associated with land-use history in the study area. Furthermore, we found that neighborhood density has a negative effect on liana survival and growth. Our results indicate that liana proliferation is likely related to a survival advantage that emerges in early stages and is influenced by climatic conditions and past disturbance. Predicted climatic changes in rainfall patterns, including more frequent and severe droughts, together with increases in disturbance, could have a significant effect on seedling tropical communities by favoring lianas.


Assuntos
Plântula , Clima Tropical , Florestas , Porto Rico , Árvores
17.
Ecol Lett ; 21(10): 1496-1504, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30084129

RESUMO

Although individual-level variation (IV) is ubiquitous in nature, it is not clear how it influences species coexistence. Theory predicts that IV will hinder coexistence but empirical studies have shown that it can facilitate, inhibit, or have a neutral effect. We use a theoretical model to explore the consequences of IV on local and regional species coexistence in the context of spatial environmental structure. Our results show that individual variation can have a positive effect on species coexistence and that this effect will critically depend on the spatial structure of such variation. IV facilitates coexistence when a negative, concave-up relationship between individuals' competitive response and population growth rates propagates to a disproportionate advantage for the inferior competitor, provided that each species specialises in a habitat. While greater variation in the preferred habitat generally fosters coexistence, the opposite is true for non-preferred habitats. Our results reconcile theory with empirical findings.


Assuntos
Ecossistema , Modelos Biológicos , Humanos , Modelos Teóricos , Dinâmica Populacional
18.
Proc Biol Sci ; 285(1876)2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29618550

RESUMO

Why tropical forests harbour an exceptional number of species with striking differences in abundances remains an open question. We propose a theoretical framework to address this question in which rare species may have different extirpation risks depending on species ranks in tree growth and sensitivities to neighbourhood interactions. To evaluate the framework, we studied tree growth and its responses to neighbourhood dissimilarity (ND) in traits and phylogeny for 146 species in a neotropical forest. We found that tree growth was positively related to ND, and common species were more strongly affected by ND than rare species, which may help delay dominance of common species. Rare species grew more slowly at the community-wide average ND than common species. But rare species grew faster when common species tended to dominate locally, which may help reduce extirpation risk of rare species. Our study highlights that tree growth rank among species depends on their responses to neighbourhood interactions, which can be important in fostering diversity maintenance in tropical forests.


Assuntos
Biodiversidade , Florestas , Árvores/crescimento & desenvolvimento , Teorema de Bayes , Panamá , Filogenia , Árvores/classificação , Clima Tropical
19.
Ecology ; 99(10): 2272-2283, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29975420

RESUMO

Abiotic constraints and biotic interactions act simultaneously to shape communities. However, these community assembly mechanisms are often studied independently, which can limit understanding of how they interact to affect species dynamics and distributions. We develop a hierarchical Bayesian neighborhood modeling approach to quantify the simultaneous effects of topography and crowding by neighbors on the growth of 124,704 individual stems ≥1 cm DBH for 1,047 tropical tree species in a 25-ha mapped rainforest plot in Amazonian Ecuador. We build multi-level regression models to evaluate how four key functional traits (specific leaf area, maximum tree size, wood specific gravity and seed mass) mediate tree growth response to topography and neighborhood crowding. Tree growth is faster in valleys than on ridges and is reduced by neighborhood crowding. Topography and crowding interact to influence tree growth in ~10% of the species. Specific leaf area, maximum tree size and seed mass are associated with growth responses to topography, but not with responses to neighborhood crowding or with the interaction between topography and crowding. In sum, our study reveals that topography and neighborhood crowding each influence tree growth in tropical forests, but act largely independently in shaping species distributions. While traits were associated with species response to topography, their role in species response to neighborhood crowding was less clear, which suggests that trait effects on neighborhood dynamics may depend on the direction (negative/positive) and degree of symmetry of biotic interactions. Our study emphasizes the importance of simultaneously assessing the individual and interactive role of multiple mechanisms in shaping species dynamics in high diversity tropical systems.


Assuntos
Florestas , Floresta Úmida , Teorema de Bayes , Equador , Clima Tropical , Madeira
20.
Ecology ; 99(3): 607-620, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29281752

RESUMO

Arbuscular mycorrhizal (AM) fungi in the soil may influence tropical tree dynamics and forest succession. The mechanisms are poorly understood, because the functional characteristics and abundances of tree species and AM fungi are likely to be codependent. We used generalized joint attribute modeling to evaluate if AM fungi are associated with three forest community metrics for a sub-tropical montane forest in Puerto Rico. The metrics chosen to reflect changes during forest succession are the abundance of seedlings of different successional status, the amount of foliar damage on seedlings of different successional status, and community-weighted mean functional trait values (adult specific leaf area [SLA], adult wood density, and seed mass). We used high-throughput DNA sequencing to identify fungal operational taxonomic units (OTUs) in the soil. Model predictions showed that seedlings of mid- and late-successional species had less leaf damage when the 12 most common AM fungi were abundant compared to when these fungi were absent. We also found that seedlings of mid-successional species were predicted to be more abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. In contrast, early-successional tree seedlings were predicted to be less abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. Finally, we showed that, among the 12 most common AM fungi, different AM fungi were correlated with functional trait characteristics of early- or late-successional species. Together, these results suggest that early-successional species might not rely as much as mid- and late-successional species on AM fungi, and AM fungi might accelerate forest succession.


Assuntos
Micorrizas/genética , Fungos , Porto Rico , Plântula/microbiologia , Microbiologia do Solo , Árvores/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA