RESUMO
Among a wide diversity of sexually reproducing species, male ejaculates coagulate to form what has been termed a copulatory plug. A number of functions have been attributed to copulatory plugs, including the inhibition of female remating and the promotion of ejaculate movement. Here we demonstrate that copulatory plugs also influence the likelihood of implantation, which occurs roughly 4 days after copulation in mice. Using a bead transfer method to control for differences in ejaculate retention and fertilization rates, we show that implantation rates significantly drop among females mated to genetically engineered males incapable of forming plugs (because they lack functional transglutaminase 4, the main enzyme responsible for its formation). Surprisingly, this result does not correlate with differences in circulating progesterone levels among females, an important hormone involved in implantation. We discuss three models that connect male-derived copulatory plugs to implantation success, including the hypothesis that plugs contribute to a threshold amount of stimulation required for females to become receptive to implantation.
Assuntos
Implantação do Embrião/fisiologia , Animais , Copulação/fisiologia , Ejaculação/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Gravidez , Transglutaminases/genética , Transglutaminases/metabolismoRESUMO
It has been well documented in the arthroplasty literature that lumbar degenerative disc disease (DDD) contributes to abnormal spinopelvic motion. However, the relationship between the severity or pattern of hip osteoarthritis (OA) as measured on an anteroposterior (AP) pelvic view and spinopelvic biomechanics has not been well investigated. Therefore, the aim of the study is to examine the association between the severity and pattern of hip OA and spinopelvic motion. A retrospective chart review was conducted to identify patients undergoing primary total hip arthroplasty (THA). Plain AP pelvic radiographs were reviewed to document the morphological characteristic of osteoarthritic hips. Lateral spine-pelvis-hip sitting and standing plain radiographs were used to measure sacral slope (SS) and pelvic femoral angle (PFA) in each position. Lumbar disc spaces were measured to determine the presence of DDD. The difference between sitting and standing SS and PFA were calculated to quantify spinopelvic motion (ΔSS) and hip motion (ΔPFA), respectively. Univariate analysis and Pearson correlation were used to identify morphological hip characteristics associated with changes in spinopelvic motion. In total, 139 patients were included. Increased spinopelvic motion was observed in patients with loss of femoral head contour, cam deformity, and acetabular bone loss (all p < 0.05). Loss of hip motion was observed in patients with loss of femoral head contour, cam deformity, and acetabular bone loss (all p < 0.001). A decreased joint space was associated with a decreased ΔPFA (p = 0.040). The presence of disc space narrowing, disc space narrowing > two levels, and disc narrowing involving the L5-S1 segment were associated with decreased spinopelvic motion (all p < 0.05). Preoperative hip OA as assessed on an AP pelvic radiograph predicts spinopelvic motion. These data suggest that specific hip osteoarthritic morphological characteristics listed above alter spinopelvic motion to a greater extent than others.
Assuntos
Artroplastia de Quadril , Degeneração do Disco Intervertebral , Osteoartrite do Quadril , Humanos , Osteoartrite do Quadril/diagnóstico por imagem , Osteoartrite do Quadril/cirurgia , Estudos Retrospectivos , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/cirurgia , Acetábulo/cirurgia , Sacro/cirurgia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/cirurgiaRESUMO
BACKGROUND: Endoprosthetic distal femoral replacement (DFR) is a well-established salvage procedure following resection of malignant tumors within the distal femur. Use of an all-polyethylene tibial (APT) component is cost-effective and avoids failure due to locking-mechanism issues and backside wear, but limits modularity and the option for late liner exchange. Due to a paucity of literature we sought to answer three questions: (1) What are the most common modes of implant failure for patients undergoing cemented DFR with APT for oncologic indications? (2) What is the survivorship, rate of all-cause reoperation, and rate of revision for aseptic loosening of these implants? And (3) Is there a difference in implant survivorship or patient demographics between cemented DFRs with APT performed as a primary reconstruction vs those performed as a revision procedure? AIM: To assess outcomes of cemented DFRs with APT components used for oncologic indications. METHODS: After Institutional Review Board approval, a retrospective review of consecutive patients who underwent DFR between December 2000 to September 2020 was performed using a single-institutional database. Inclusion criteria consisted of all patients who underwent DFR with a GMRS® (Global Modular Replacement System, Stryker, Kalamazoo, MI, United States) cemented distal femoral endoprosthesis and APT component for an oncologic indication. Patients undergoing DFR for non-oncologic indications and patients with metal-backed tibial components were excluded. Implant failure was recorded using Henderson's classification and survivorship was reported using a competing risks analysis. RESULTS: 55 DFRs (55 patients) with an average age of 50.9 ± 20.7 years and average body mass index of 29.7 ± 8.3 kg/m2 were followed for 38.8 ± 54.9 mo (range 0.2-208.4). Of these, 60.0% were female and 52.7% were white. The majority of DFRs with APT in this cohort were indicated for oncologic diagnoses of osteogenic sarcoma (n = 22, 40.0%), giant cell tumor (n = 9, 16.4%), and metastatic carcinoma (n = 8, 14.6%). DFR with APT implantation was performed as a primary procedure in 29 patients (52.7%) and a revision procedure in 26 patients (47.3%). Overall, twenty patients (36.4%) experienced a postoperative complication requiring reoperation. The primary modes of implant failure included Henderson Type 1 (soft tissue failure, n = 6, 10.9%), Type 2 (aseptic loosening, n = 5, 9.1%), and Type 4 (infection, n = 6, 10.9%). There were no significant differences in patient demographics or rates of postoperative complications between the primary procedure and revision procedure subgroups. In total, 12 patients (21.8%) required a revision while 20 patients (36.4%) required a reoperation, resulting in three-year cumulative incidences of 24.0% (95%CI 9.9%-41.4%) and 47.2% (95%CI 27.5%-64.5%), respectively. CONCLUSION: This study demonstrates modest short-term survivorship following cemented DFR with APT components for oncologic indications. Soft tissue failure and endoprosthetic infection were the most common postoperative complications in our cohort.