Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Cells ; 27(4): 254-265, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35094457

RESUMO

Vaccinia-related kinase 2 (VRK2) is a serine/threonine kinase initially identified in highly proliferative cells such as thymocytes and fetal liver cells, and it is involved in cell proliferation and survival. VRK2 is also expressed in the brain; however, its molecular function in the central nervous system is mostly unknown. Many genome-wide association studies (GWASs) have reported that VRK2 is a potential candidate molecule for neuropsychiatric diseases such as schizophrenia in humans. However, the pathophysiological relationship between VRK2 and neuropsychiatric disorders has not been fully investigated. In this study, we evaluated vrk2-deficient (vrk2-/- ) zebrafish and found that vrk2-/- female zebrafish showed aggressive behavior and different social preference compared with control (vrk2+/+ ) zebrafish, with low gamma-aminobutyric acid (GABA) content in the brain and high density of neuronal dendrites when compared to vrk2+/+ zebrafish. These findings suggest that female vrk2-/- zebrafish were indeed a model of malbehavior characterized by aggression and social interaction, which can be attributed to the low levels of GABA content in their brain.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas Serina-Treonina Quinases , Peixe-Zebra , Agressão , Animais , Feminino , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra/genética , Ácido gama-Aminobutírico
2.
Biochem Biophys Res Commun ; 533(4): 1470-1476, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33333712

RESUMO

Exosc2 is one of the components of the exosome complex involved in RNA 3' end processing and degradation of various RNAs. Recently, EXOSC2 mutation has been reported in German families presenting short stature, hearing loss, retinitis pigmentosa, and premature aging. However, the in vivo function of EXOSC2 has been elusive. Herein, we generated Exosc2 knockout (exosc2-/-) zebrafish that showed larval lethality 13 days post fertilization, with microcephaly, loss of spinal motor neurons, myelin deficiency, and retinitis pigmentosa. Mechanistically, Exosc2 deficiency caused impaired mRNA turnover, resulting in a nucleotide pool imbalance. Rapamycin, which modulated mRNA turnover by inhibiting the mTOR pathway, improved nucleotide pool imbalance in exosc2-/- zebrafish, resulting in prolonged survival and partial rescue of neuronal defects. Taken together, our findings offer new insights into the disease pathogenesis caused by Exosc2 deficiency, and might help explain fundamental molecular mechanisms in neuronal diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, and spinal muscular atrophy.


Assuntos
Nucleotídeos/metabolismo , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Embrião não Mamífero/anormalidades , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Larva/genética , Larva/fisiologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Proteína Básica da Mielina/genética , Nucleotídeos/genética , Sirolimo/farmacologia , Peixe-Zebra/embriologia
4.
Zebrafish ; 18(5): 316-325, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34491109

RESUMO

The zebrafish is a valuable model organism that is widely used in studies of vertebrate development. In the laboratory, zebrafish embryonic development is normally carried out at 28.5°C. In this study, we sought to determine whether it was possible to modify the speed of embryonic development through the use of short- and long-term variations in incubation temperature. After incubation at 20°C-32°C, most early-stage embryos survived to the epiboly stage, whereas more than half of the embryos died at <20°C or >32°C. The rate of development differed between embryos incubated at the lowest (18°C) and highest (34°C) temperatures: a difference of 60 min was observed at the 2-cell stage and 290 min at the 1k-cell stage. When blastulae that had developed at 28°C were transferred to a temperature lower than 18°C for one or more hours, they developed normally after being returned to the original 28°C. Analyses using green fluorescent protein-buckyball mRNA and in situ hybridization against vasa mRNA showed that primordial germ cells increase under low-temperature culture; this response may be of use for studies involving heterochronic germ cell transplantation. Our study shows that embryonic developmental speed can be slowed, which will be of value for performing time-consuming, complicated, and delicate microsurgical operations.


Assuntos
Embrião não Mamífero , Peixe-Zebra , Animais , Blástula , Desenvolvimento Embrionário , Temperatura
5.
Int J Dev Biol ; 63(11-12): 597-604, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32149369

RESUMO

The goldfish (Carassius auratus auratus) is a useful species for embryonic micromanipulations because of its large egg size and wide temperature tolerance. Here, we describe in detail the rate of development and morphological characteristics of goldfish embryos incubated at temperatures between 10 °C and 30 °C. The cleavage speed increased rapidly as temperature increased. Synchronized cell divisions occurred at 131 min intervals at 10 °C, at 33 min intervals at 20 °C, and at 19 min intervals at 30 °C during the cleavage period. The rate of hatched abnormal embryos significantly increased at temperatures of 26 °C and above, while there was no change in the number of abnormal embryos at temperatures less than 24 °C. Moreover, the blastomeres around the center of the blastodisc rose in the direction of the animal pole at temperatures less than 14 °C. At the lower temperatures, clusters of maternally-supplied germplasm were visualized both at the ends of the first three cleavage furrows and at the border between the lower and upper tiers at the 16- to 32-cell stage, with injection of artificial mRNA and vasa in situ hybridization. This study showed that temperature affects not only developmental speed but also the shape of the blastodisc and the distribution of maternally-supplied materials in the blastodisc. By controlling the temperature, it is possible for researchers to prepare many stages of embryos and shapes of the blastodisc from a single batch of eggs.


Assuntos
Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Carpa Dourada/embriologia , Temperatura , Animais , Diferenciação Celular/genética , Divisão Celular/genética , Movimento Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Fatores de Tempo
6.
Int J Dev Biol ; 61(6-7): 397-405, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28695959

RESUMO

In teleost fish, the gonad originates from primordial germ cells (PGCs) and somatic cells. However, it is not clear whether the final gonadal position is determined by anteroposterior and dextrosinistral differentiation of endodermal organs or by the distribution of PGCs. The pond smelt has a transparent body even after hatching, enabling clear observation of PGC distribution and endodermal differentiation. Here, we first examined normal embryonic development to define the spatio-temporal characteristics of our developmental model. Second, the origin of PGCs was investigated by in situ hybridization. Third, the migration route of PGCs was tracked by microinjection of GFP-nos3 3' UTR mRNA and visualization of PGCs by green fluorescent protein. Lastly, differentiation of gonadal and endodermal organs was examined histologically. Maternal vasa transcripts were detected at the ends of cleavage furrows, indicating that PGCs differentiated by inheritance of germplasm as in other teleosts. During gastrulation, PGCs migrated following somatic cell movement and lined both sides of the embryonic body. During the segmentation period, PGCs moved posteriorly and were distributed in a line among dorsal mesentery cells around the posterior part of the intestinal bulb in the 16th to 24th somite region at 3 days post hatching. At 1 month post hatching, the gonad was formed at the 20th somite region. PGC distribution was biased to the left side of the body cavity, while the pancreas was formed on the right side. These results indicate that PGCs accumulate at the gonadal region by dorsal mesentery cells, and gonadal position is determined by the digestive system.


Assuntos
Diferenciação Celular , Movimento Celular/fisiologia , Células Germinativas/fisiologia , Gônadas/embriologia , Osmeriformes/fisiologia , Animais , Células Germinativas/citologia , Gônadas/fisiologia , Lagoas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA