Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18449, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117708

RESUMO

Although mangrove forests are great carbon sinks, they also release carbon dioxide (CO2) from soil, plants, and water through respiration. Many studies have focused on CO2 effluxes only from soils, but the role of biogenic structures such as pneumatophore roots has been poorly studied. Hence, CO2 effluxes from pneumatophores were quantified at sediment-air (non-flooded sediment) and water-air (flooded sediment) interfaces along a salinity gradient in three mangrove types (fringe, scrub, and basin) dominated by Avicennia germinans during the dry and rainy seasons in Yucatan, Mexico. Pneumatophore abundance explained up to 91% of CO2 effluxes for scrub, 87% for fringe, and 83% for basin mangrove forests at the water-air interface. Overall, CO2 effluxes were inversely correlated with temperature and salinity. The highest CO2 effluxes were in the fringe and the lowest were in the scrub mangrove forests. Flooding decreased CO2 effluxes from the dry to the rainy season in all mangrove forests. These results highlight the contribution of pneumatophores to mangrove respiration, and the need to include them in our current carbon budgets and models, but considering different exchange interfaces, seasons, and mangrove ecotypes.

2.
Sci Total Environ ; 904: 166358, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595911

RESUMO

Accurate measurements of methane (CH4) and carbon dioxide (CO2) fluxes from tree stems are important for understanding greenhouse gas emissions. Closed chamber methods are commonly employed for this purpose; however, leaks between the chamber and the atmosphere as well as gas accumulation, known as the concentration buildup effect, can impact flux measurements significantly. In this study, we investigated the impacts of concentration buildup and leaks on semi-rigid closed chamber methods. Field measurements were conducted on six tree species, including three species from a Mexican mangrove ecosystem and three species from a Magellanic sub-Antarctic forest. Systematic observations revealed significant leak flow rates, ranging from 0.00 to 465 L h-1, with a median value of 1.25 ± 75.67 L h-1. We tested the efficacy of using cement to reduce leaks, achieving a leak flow rate reduction of 46-98 % without complete elimination. Our study also demonstrates a clear and substantial impact of concentration buildup on CH4 flux measurements, while CO2 flux measurements were relatively less affected across all tree species studied. Our results show that the combined effects of leaks and concentration buildup can lead to an underestimation of CH4 emissions by an average of 40 ± 20 % and CO2 emissions by 22 ± 22 %, depending on the bark roughness. Based on these findings, we recall a straightforward yet effective method to minimize experimental errors associated with these phenomena, previously established, and reiterated in the current context, for calculating emissions that considers effects of leaks and concentration buildup, while eliminating the need for separate determinations of these phenomena. Overall, the results, combined with a literature review, suggest that our current estimates of GHG flux from tree stems are currently underestimated.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Dióxido de Carbono/análise , Ecossistema , Árvores , Metano/análise , Óxido Nitroso/análise
3.
Oecologia ; 164(4): 871-80, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20652592

RESUMO

Expression of crassulacean acid metabolism (CAM) is characterized by extreme variability within and between taxa and its sensitivity to environmental variation. In this study, we determined seasonal fluctuations in CAM photosynthesis with measurements of nocturnal tissue acidification and carbon isotopic composition (δ(13)C) of bulk tissue and extracted sugars in three plant communities along a precipitation gradient (500, 700, and 1,000 mm year(-1)) on the Yucatan Peninsula. We also related the degree of CAM to light habitat and relative abundance of species in the three sites. For all species, the greatest tissue acid accumulation occurred during the rainy season. In the 500 mm site, tissue acidification was greater for the species growing at 30% of daily total photon flux density (PFD) than species growing at 80% PFD. Whereas in the two wetter sites, the species growing at 80% total PFD had greater tissue acidification. All species had values of bulk tissue δ(13)C less negative than -20‰, indicating strong CAM activity. The bulk tissue δ(13)C values in plants from the 500 mm site were 2‰ less negative than in plants from the wetter sites, and the only species growing in the three communities, Acanthocereus tetragonus (Cactaceae), showed a significant negative relationship between both bulk tissue and sugar δ(13)C values and annual rainfall, consistent with greater CO(2) assimilation through the CAM pathway with decreasing water availability. Overall, variation in the use of CAM photosynthesis was related to water and light availability and CAM appeared to be more ecologically important in the tropical dry forests than in the coastal dune.


Assuntos
Dióxido de Carbono/metabolismo , Crassulaceae/metabolismo , Crassulaceae/efeitos da radiação , Ecossistema , Luz , Ácidos/metabolismo , Ácidos/efeitos da radiação , Cactaceae/química , Cactaceae/metabolismo , Cactaceae/efeitos da radiação , Isótopos de Carbono/metabolismo , Crassulaceae/química , México , Chuva , Estações do Ano
4.
Ecol Evol ; 8(22): 11083-11099, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30519427

RESUMO

The environmental variability at local scale results in different physiognomic types of mangrove forest. However, this variability has never been considered in studies of mangrove genetic variability. This study analyzed the genetic and morphological variability and structure of Rhizophora mangle at regional and local scales in the Yucatan Peninsula. Thirteen mangrove populations (eight scrub and five tall), located in seven sites, were sampled, and their morphological variability and relationship with the availability of phosphorus and salinity were analyzed. The diversity and genetic structure were estimated at different hierarchical levels with nine microsatellites, also Bayesian inference and Principal Coordinates Analysis were used. We found a great morphological variability of R. mangle that responded to local environmental variability and not to the precipitation gradient of the peninsula. The genetic diversity found in the peninsula was greater than that reported for other populations in Mexico and was grouped into two regions: the Gulf of Mexico and the Caribbean Sea. At a local scale, tall and scrub mangroves had significant genetic differentiation suggesting that ecological barriers promote genetic differentiation within sites. These results need to be considered in future population genetic studies and for mangrove management and conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA