Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 19(1): 88-98, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23164821

RESUMO

Although the mechanism of Aß action in the pathogenesis of Alzheimer's disease (AD) has remained elusive, it is known to increase the expression of the antagonist of canonical wnt signalling, Dickkopf-1 (Dkk1), whereas the silencing of Dkk1 blocks Aß neurotoxicity. We asked if clusterin, known to be regulated by wnt, is part of an Aß/Dkk1 neurotoxic pathway. Knockdown of clusterin in primary neurons reduced Aß toxicity and DKK1 upregulation and, conversely, Aß increased intracellular clusterin and decreased clusterin protein secretion, resulting in the p53-dependent induction of DKK1. To further elucidate how the clusterin-dependent induction of Dkk1 by Aß mediates neurotoxicity, we measured the effects of Aß and Dkk1 protein on whole-genome expression in primary neurons, finding a common pathway suggestive of activation of wnt-planar cell polarity (PCP)-c-Jun N-terminal kinase (JNK) signalling leading to the induction of genes including EGR1 (early growth response-1), NAB2 (Ngfi-A-binding protein-2) and KLF10 (Krüppel-like factor-10) that, when individually silenced, protected against Aß neurotoxicity and/or tau phosphorylation. Neuronal overexpression of Dkk1 in transgenic mice mimicked this Aß-induced pathway and resulted in age-dependent increases in tau phosphorylation in hippocampus and cognitive impairment. Furthermore, we show that this Dkk1/wnt-PCP-JNK pathway is active in an Aß-based mouse model of AD and in AD brain, but not in a tau-based mouse model or in frontotemporal dementia brain. Thus, we have identified a pathway whereby Aß induces a clusterin/p53/Dkk1/wnt-PCP-JNK pathway, which drives the upregulation of several genes that mediate the development of AD-like neuropathologies, thereby providing new mechanistic insights into the action of Aß in neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Clusterina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Wnt/metabolismo , Idoso , Doença de Alzheimer/patologia , Animais , Células Cultivadas , Clusterina/genética , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
2.
Mol Psychiatry ; 18(8): 943-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23628982

RESUMO

Adhesion-G protein-coupled receptors (GPCRs) are a poorly studied subgroup of the GPCRs, which have diverse biological roles and are major targets for therapeutic intervention. Among them, the Brain Angiogenesis Inhibitor (BAI) family has been linked to several psychiatric disorders, but despite their very high neuronal expression, the function of these receptors in the central nervous system has barely been analyzed. Our results, obtained using expression knockdown and overexpression experiments, reveal that the BAI3 receptor controls dendritic arborization growth and branching in cultured neurons. This role is confirmed in Purkinje cells in vivo using specific expression of a deficient BAI3 protein in transgenic mice, as well as lentivirus driven knockdown of BAI3 expression. Regulation of dendrite morphogenesis by BAI3 involves activation of the RhoGTPase Rac1 and the binding to a functional ELMO1, a critical Rac1 regulator. Thus, activation of the BAI3 signaling pathway could lead to direct reorganization of the actin cytoskeleton through RhoGTPase signaling in neurons. Given the direct link between RhoGTPase/actin signaling pathways, neuronal morphogenesis and psychiatric disorders, our mechanistic data show the importance of further studying the role of the BAI adhesion-GPCRs to understand the pathophysiology of such brain diseases.


Assuntos
Dendritos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Dendritos/ultraestrutura , Técnicas de Silenciamento de Genes , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Células de Purkinje/fisiologia , Células de Purkinje/ultraestrutura , Transdução de Sinais/fisiologia
3.
Diabetologia ; 53(2): 331-40, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19908022

RESUMO

AIMS/HYPOTHESIS: Pancreatic beta cells chronically exposed to fatty acids may lose specific functions and even undergo apoptosis. Generally, lipotoxicity is triggered by saturated fatty acids, whereas unsaturated fatty acids induce lipodysfunction, the latter being characterised by elevated basal insulin release and impaired glucose responses. The peroxisome proliferator-activated receptor alpha (PPARalpha) has been proposed to play a protective role in this process, although the cellular mechanisms involved are unclear. METHODS: We modulated PPARalpha production in INS-1E beta cells and investigated key metabolic pathways and genes responsible for metabolism-secretion coupling during a culture period of 3 days in the presence of 0.4 mmol/l oleate. RESULTS: In INS-1E cells, the secretory dysfunction primarily induced by oleate was aggravated by silencing of PPARalpha. Conversely, PPARalpha upregulation preserved glucose-stimulated insulin secretion, essentially by increasing the response at a stimulatory concentration of glucose (15 mmol/l), a protection we also observed in human islets. The protective effect was associated with restored glucose oxidation rate and upregulation of the anaplerotic enzyme pyruvate carboxylase. PPARalpha overproduction increased both beta-oxidation and fatty acid storage in the form of neutral triacylglycerol, revealing overall induction of lipid metabolism. These observations were substantiated by expression levels of associated genes. CONCLUSIONS/INTERPRETATION: PPARalpha protected INS-1E beta cells from oleate-induced dysfunction, promoting both preservation of glucose metabolic pathways and fatty acid turnover.


Assuntos
Carboidratos/fisiologia , Células Secretoras de Insulina/fisiologia , Ácido Oleico/toxicidade , PPAR alfa/fisiologia , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Antígenos CD36/genética , Carnitina O-Palmitoiltransferase/genética , Técnicas de Cultura de Células , Ácidos Graxos não Esterificados/farmacologia , Regulação da Expressão Gênica , Glucose/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , PPAR alfa/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA