RESUMO
Omics technologies have rapidly evolved with the unprecedented potential to shape precision medicine. Novel omics approaches are imperative toallow rapid and accurate data collection and integration with clinical information and enable a new era of healthcare. In this comprehensive review, we highlight the utility of Raman spectroscopy (RS) as an emerging omics technology for clinically relevant applications using clinically significant samples and models. We discuss the use of RS both as a label-free approach for probing the intrinsic metabolites of biological materials, and as a labeled approach where signal from Raman reporters conjugated to nanoparticles (NPs) serve as an indirect measure for tracking protein biomarkers in vivo and for high throughout proteomics. We summarize the use of machine learning algorithms for processing RS data to allow accurate detection and evaluation of treatment response specifically focusing on cancer, cardiac, gastrointestinal, and neurodegenerative diseases. We also highlight the integration of RS with established omics approaches for holistic diagnostic information. Further, we elaborate on metal-free NPs that leverage the biological Raman-silent region overcoming the challenges of traditional metal NPs. We conclude the review with an outlook on future directions that will ultimately allow the adaptation of RS as a clinical approach and revolutionize precision medicine.
Assuntos
Medicina de Precisão , Análise Espectral Raman , Medicina de Precisão/métodos , Proteômica/métodos , Metabolômica/métodos , Biomarcadores/metabolismoRESUMO
Despite numerous screening tools for colorectal cancer (CRC), 25 % of patients are diagnosed with advanced disease. Novel diagnostic technologies that are early, accurate, and rapid are imperative to assess the therapeutic efficacy of clinical drugs and identify new biomarkers of treatment response. Here Raman spectroscopy (RS) was used to track metabolic reprogramming in KRAS-mutant HCT116 and SW837 cells, and KRAS wild-type CC cells. RS combined with multivariate analysis methods distinguished nonresponsive, partially responsive, and responsive cells treated with cetuximab, a monoclonal antibody for EGFR inhibition, sotorasib, a clinically approved KRAS inhibitor, and various doses of trametinib, an inhibitor of the MAPK pathway. Cells treated with a combination of subtoxic doses of trametinib and BKM120, an inhibitor of the PI3K pathway, showed a synergistic response between the two pathways. Using a supervised machine learning regression model, we established a scoring methodology trained to a priori predict therapeutic response to new treatment combinations. RS metabolites were verified with mass spectrometry, and enrichment pathways were identified, including amino acid, purine, and nicotinate and nicotinamide metabolism that differentiated monotherapy from combination therapy. Our approach may ultimately be applicable to patient-derived primary cells and cultures of patient tumors to predict effective drugs for individualized care.
Assuntos
Neoplasias Colorretais , Metabolômica , Análise Espectral Raman , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidoresRESUMO
Resistance to clinical therapies remains a major barrier in cancer management. There is a critical need for rapid and highly sensitive diagnostic tools that enable early prediction of treatment response to allow accurate clinical decisions. Here, Raman spectroscopy was employed to monitor changes in key metabolites as early predictors of response in KRAS-mutant colorectal cancer (CRC) cells, HCT116, treated with chemotherapies. We show at the single cell level that HCT116 is resistant to cetuximab (CTX), the first-line treatment in CRC, but this resistance can be overcome with pre-sensitization of cells with oxaliplatin (OX). In combination treatment of CTX + OX, sequential delivery of OX followed by CTX rather than simultaneous administration of drugs was observed to be critical for effective therapy. Our results demonstrated that metabolic changes are well aligned to cellular mechanical changes where Young's modulus decreased after effective treatment, indicating that both changes in mechanical properties and metabolism in cells are likely responsible for cancer proliferation. Raman findings were verified with mass spectrometry (MS) metabolomics, and both platforms showed changes in lipids, nucleic acids, and amino acids as predictors of resistance/response. Finally, key metabolic pathways enriched were identified when cells are resistant to CTX but downregulated with effective treatment. This study highlights that drug-induced metabolic changes both at the single cell level (Raman) and ensemble level (MS) have the potential to identify mechanisms of response to clinical cancer therapies.
Assuntos
Antifibrinolíticos , Neoplasias , Humanos , Análise Espectral Raman , Metabolômica , Aminoácidos , Cetuximab/farmacologia , Oxaliplatina/farmacologiaRESUMO
The in vivo dynamics of nanoparticles requires a mechanistic understanding of multiple factors. Here, for the first time, the surprising breakdown of functionalized gold nanostars (F-AuNSs) conjugated with antibodies and 64 Cu radiolabels in vivo and in artificial lysosomal fluid ex vivo, is shown. The short-term biodistribution of F-AuNSs is driven by the route of systemic delivery (intravenous vs intraperitoneal) and long-term fate is controlled by the tissue type in vivo. In vitro studies including endocytosis pathways, intracellular trafficking, and opsonization, are combined with in vivo studies integrating a milieu of spectroscopy and microcopy techniques that show F-AuNSs dynamics is driven by their physicochemical properties and route of delivery. F-AuNSs break down into sub-20 nm broken nanoparticles as early as 7 days postinjection. Martini coarse-grained simulations are performed to support the in vivo findings. Simulations suggest that shape, size, and charge of the broken nanoparticles, and composition of the lipid membrane depicting various tissues govern the interaction of the nanoparticles with the membrane, and the rate of translocation across the membrane to ultimately enable tissue clearance. The fundamental study addresses critical gaps in the knowledge regarding the fate of nanoparticles in vivo that remain a bottleneck in their clinical translation.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro/química , Distribuição Tecidual , Nanopartículas/química , Nanopartículas Metálicas/químicaRESUMO
BACKGROUND: The reactive oxygen species (ROS) and inflammation, a critical contributor to tissue damage, is well-known to be associated with various disease. The kidney is susceptible to hypoxia and vulnerable to ROS. Thus, the vicious cycle between oxidative stress and renal hypoxia critically contributes to the progression of chronic kidney disease and finally, end-stage renal disease. Thus, delivering therapeutic agents to the ROS-rich inflammation site and releasing the therapeutic agents is a feasible solution. RESULTS: We developed a longer-circulating, inflammation-sensing, ROS-scavenging versatile nanoplatform by stably loading catalase-mimicking 1-dodecanethiol stabilized Mn3O4 (dMn3O4) nanoparticles inside ROS-sensitive nanomicelles (PTC), resulting in an ROS-sensitive nanozyme (PTC-M). Hydrophobic dMn3O4 nanoparticles were loaded inside PTC micelles to prevent premature release during circulation and act as a therapeutic agent by ROS-responsive release of loaded dMn3O4 once it reached the inflammation site. CONCLUSIONS: The findings of our study demonstrated the successful attenuation of inflammation and apoptosis in the IRI mice kidneys, suggesting that PTC-M nanozyme could possess promising potential in AKI therapy. This study paves the way for high-performance ROS depletion in treating various inflammation-related diseases.
Assuntos
Injúria Renal Aguda , Injúria Renal Aguda/tratamento farmacológico , Animais , Catalase , Feminino , Humanos , Hipóxia , Inflamação/tratamento farmacológico , Masculino , Camundongos , Estresse Oxidativo , Espécies Reativas de OxigênioRESUMO
BACKGROUND: Recently, we developed hydrophobically modified glycol chitosan (HGC) nanomicelles loaded with tacrolimus (TAC) (HGC-TAC) for the targeted renal delivery of TAC. Herein, we determined whether the administration of the HGC-TAC nanomicelles decreases kidney injury in a model of lupus nephritis. Lupus-prone female MRL/lpr mice were randomly assigned into three groups that received intravenous administration of either vehicle control, an equivalent dose of TAC, or HGC-TAC (0.5 mg/kg TAC) weekly for 8 weeks. Age-matched MRL/MpJ mice without Faslpr mutation were also treated with HGC vehicle and used as healthy controls. RESULTS: Weekly intravenous treatment with HGC-TAC significantly reduced genetically attributable lupus activity in lupus nephritis-positive mice. In addition, HGC-TAC treatment mitigated renal dysfunction, proteinuria, and histological injury, including glomerular proliferative lesions and tubulointerstitial infiltration. Furthermore, HGC-TAC treatment reduced renal inflammation and inflammatory gene expression and ameliorated increased apoptosis and glomerular fibrosis. Moreover, HGC-TAC administration regulated renal injury via the TGF-ß1/MAPK/NF-κB signaling pathway. These renoprotective effects of HGC-TAC treatment were more potent in lupus mice compared to those of TAC treatment alone. CONCLUSION: Our study indicates that weekly treatment with the HGC-TAC nanomicelles reduces kidney injury resulting from lupus nephritis by preventing inflammation, fibrosis, and apoptosis. This advantage of a new therapeutic modality using kidney-targeted HGC-TAC nanocarriers may improve drug adherence and provide treatment efficacy in lupus nephritis mice.
Assuntos
Quitosana/farmacologia , Quitosana/uso terapêutico , Nefrite Lúpica/tratamento farmacológico , Micelas , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Animais , Apoptose , Quitosana/química , Feminino , Fibrose/patologia , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Inflamação , Rim/lesões , Rim/patologia , Nefrite Lúpica/patologia , Camundongos , Camundongos Endogâmicos MRL lpr , NF-kappa B/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Chronic kidney disease (CKD) is a global health problem, and there is no permanent treatment for reversing kidney failure; thus, early diagnosis and effective treatment are required. Gene therapy has outstanding potential; however, the lack of safe gene delivery vectors, a reasonable transfection rate, and kidney targeting ability limit its application. Nanoparticles can offer innovative ways to diagnose and treat kidney diseases as they facilitate targetability and therapeutic efficacy. METHODS: Herein, we developed a proximal renal tubule-targeting gene delivery system based on alternative copolymer (PS) of sorbitol and polyethyleneimine (PEI), modified with vimentin-specific chitobionic acid (CA), producing PS-conjugated CA (PSC) for targeting toward vimentin-expressing cells in the kidneys. In vitro studies were used to determine cell viability, transfection efficiency, serum influence, and specific uptake in the human proximal renal tubular epithelial cell line (HK-2). Finally, the targeting efficiency of the prepared PSC gene carriers was checked in a murine model of Alport syndrome. RESULTS: Our results suggested that the prepared polyplex showed low cytotoxicity, enhanced transfection efficiency, specific uptake toward HK-2 cells, and excellent targeting efficiency toward the kidneys. CONCLUSION: Collectively, from these results it can be inferred that the PSC can be further evaluated as a potential gene carrier for the kidney-targeted delivery of therapeutic genes for treating diseases.
Assuntos
Nanopartículas/química , Plasmídeos/genética , Vimentina/genética , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dissacarídeos/química , Corantes Fluorescentes/química , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Nanopartículas/toxicidade , Plasmídeos/química , Plasmídeos/metabolismo , Polietilenoimina/química , Polímeros/química , Açúcares Ácidos/química , Transfecção/métodos , Vimentina/metabolismoRESUMO
Cancer represents one of the most dangerous diseases, with 1.8 million deaths worldwide. Despite remarkable advances in conventional therapies, these treatments are not effective to completely eradicate cancer. Nanotechnology offers potential cancer treatment based on formulations of several nanoparticles (NPs). Liposomes and polymeric nanoparticle are the most investigated and effective drug delivery systems (DDS) for cancer treatment. Liposomes represent potential DDS due to their distinct properties, including high-drug entrapment efficacy, biocompatibility, low cost, and scalability. However, their use is restricted by susceptibility to lipid peroxidation, instability, burst release of drugs, and the limited surface modification. Similarly, polymeric nanoparticles show several chemical modifications with polymers, good stability, and controlled release, but their drawbacks for biological applications include limited drug loading, polymer toxicity, and difficulties in scaling up. Therefore, polymeric nanoparticles and liposomes are combined to form polymer-lipid hybrid nanoparticles (PLHNPs), with the positive attributes of both components such as high biocompatibility and stability, improved drug payload, controlled drug release, longer circulation time, and superior in vivo efficacy. In this review, we have focused on the prominent strategies used to develop tumor targeting PLHNPs and discuss their advantages and unique properties contributing to an ideal DDS.
Assuntos
Lipídeos/química , Terapia de Alvo Molecular/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polímeros/química , Polímeros/farmacologia , Animais , Humanos , Polímeros/uso terapêuticoRESUMO
Biodegradable polymers have been developed for the targeted delivery of therapeutics to tumors. However, tumor targeting and imaging are usually limited by systemic clearance and non-specific adsorption. In this study, we used poly(amino acid) derivatives, such as poly(succinimide), to synthesize a nanomicelle-forming poly(hydroxyethylaspartamide) (PHEA, P) modified sequentially with octadecylamine, polyethylene glycol (PEG, P), and glycine (G) to design PHEA-PEG-glycine (PPG) nanoparticles (NPs). These PPG NPs were further tethered to cyclic Arg-Gly-Asp (cRGD) sequences for formulating tumor-targeting PPG-cRGD NPs, and then loaded with IR-780 dye (PPG-cRGD-IR-780) for visualizing tumor homing. cRGD cloaked in PPG NPs could bind specifically to both tumor endothelium and cancer cells overexpressing αvß3 integrins. PPG-cRGD NPs exhibited enhanced physiological stability, cellular viability, and targeted intracellular uptake in cancer cells. In addition, PPG-cRGD NPs offered enhanced systemic circulation, leading to preferential tumor targeting and prolonged fluorescence tumor imaging for nearly 30 days. Nevertheless, non-targeted formulations demonstrated premature systemic clearance with short-term tumor imaging. Histochemical analysis showed no damage to normal organs, reaffirming the biocompatibility of PHEA polymers. Overall, our results indicated that PPG-cRGD NPs, which were manipulated to obtain optimal particle size and surface charge, and were complemented with tumor targeting, could improve the targeted and theranostic potential of therapeutic delivery.
Assuntos
Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Peptídeos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Aminas/síntese química , Aminas/química , Animais , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicina/química , Humanos , Indóis/química , Integrinas/genética , Camundongos , Nanopartículas/química , Neoplasias/patologia , Oligopeptídeos/administração & dosagem , Oligopeptídeos/síntese química , Oligopeptídeos/química , Peptídeos/síntese química , Peptídeos/química , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polímeros/administração & dosagem , Polímeros/química , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Immune system evasion by cancer cells is one of the hallmarks of cancers, and it occurs with the support of tumor-associated immune cells (TICs) in the tumor microenvironment that increase the growth and invasiveness of tumor cells. With recent advancements in the development of novel near-infrared (NIR)-responsive nanoparticles, specifically eradicating TICs or inducing an inflammatory immune response by activating killer T cells has become possible. This review will discuss the mechanisms and applications of phototriggered immunotherapy in detail. In addition, various nanoparticles employed in phototriggered immunotherapy for cancer treatment will be covered. Furthermore, the challenges and future directions of phototriggered nanoparticle development for anticancer immunotherapy will be briefly discussed.
Assuntos
Imunoterapia/métodos , Nanopartículas/uso terapêutico , Neoplasias/terapia , Fototerapia/métodos , Microambiente Tumoral/imunologia , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/farmacologia , Humanos , Imunoterapia/instrumentação , Luz , Nanopartículas/química , Neoplasias/imunologia , Neoplasias/patologia , Fotoquimioterapia/instrumentação , Fotoquimioterapia/métodos , Fototerapia/instrumentação , Microambiente Tumoral/efeitos dos fármacosRESUMO
Biomimetic nanoplatform being a recent and emerging strategy plays an important role in a wide variety of applications. The different types of membranes used for coating include membranes from red blood cells, platelets, leucocytes, neutrophils, cancer cells, stem cells, etc. The as obtained membrane vesicles are fused onto the core nanoparticles through extrusion, sonication, electroporation. Biomimetic nanoparticles attain special functions which include ligand recognition and targeting, long blood circulation, immune escaping, tumor targeting depending on the core-shell interactions. The membrane coated nanoparticles indeed mimic the source cells and improves the therapeutic efficacy of drugs other cargos through specific delivery and enhanced accumulation in the tumor.
Assuntos
Materiais Biomiméticos , Membrana Celular/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Humanos , Preparações FarmacêuticasRESUMO
To prolong blood circulation and avoid the triggering of immune responses, nanoparticles in the bloodstream require conjugation with polyethylene glycol (PEG). However, PEGylation hinders the interaction between the nanoparticles and the tumor cells and therefore limits the applications of PEGylated nanoparticles for therapeutic drug delivery. To overcome this limitation, zwitterionic materials can be used to enhance the systemic blood circulation and tumor-specific delivery of hydrophobic agents such as IR-780 iodide dye for photothermal therapy. Herein, we developed micellar nanoparticles using the amphiphilic homopolymer poly(12-(methacryloyloxy)dodecyl phosphorylcholine) (PCB-lipid) synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The PCB-lipid can self-assemble into micelles and encapsulate IR-780 dye (PCB-lipid-IR-780). Our results demonstrated that PCB-lipid-IR-780 nanoparticle (NP) exhibited low cytotoxicity and remarkable photothermal cytotoxicity to cervical cancer cells (TC-1) upon near-infrared (NIR) laser irradiation. The biodistribution of PCB-lipid-IR-780 showed higher accumulation of PCB-lipid-IR-780 than that of free IR-780 in the TC-1 tumor. Furthermore, following NIR laser irradiation of the tumor region, the PCB-lipid-IR-780 accumulated in the tumor facilitated enhanced tumor ablation and subsequent tumor regression in the TC-1 xenograft model. Hence, these zwitterionic polymer-lipid hybrid micellar nanoparticles show great potential for cancer theranostics and might be beneficial for clinical applications.
Assuntos
Hipertermia Induzida/métodos , Indóis/química , Fototerapia/métodos , Polímeros/síntese química , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/terapia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Micelas , Nanopartículas/administração & dosagem , Nanopartículas/química , Polímeros/química , Polímeros/farmacocinética , Distribuição Tecidual , Resultado do Tratamento , Neoplasias do Colo do Útero/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
To develop an efficient bacteria-based microrobot, first, therapeutic bacteria should be encapsulated into microbeads using biodegradable and biocompatible materials; second, the releasing rate of the encapsulated bacteria for theragnostic function should be regulated; and finally, flagellated bacteria should be attached on the microbeads to ensure the motility of the microrobot. For the therapeutic bacteria encapsulation, an alginate can be a promising candidate as a biodegradable and biocompatible material. Owing to the non-regulated releasing rate of the encapsulated bacteria in alginate microbeads and the weak attachment of flagellated bacteria on the surface of alginate microbeads, however, the alginate microbeads cannot be used as effective cargo for a bacteria-based microrobot. In this paper, to enhance the stability of the bacteria encapsulation and the adhesion of flagellated bacteria in alginate microbeads, we performed a surface modification of alginate microbeads using chitosan coating. The bacteria-encapsulated alginate microbeads with 1% chitosan coating maintained their structural integrity up to 72 h, whereas the control alginate microbead group without chitosan coating showed severe degradations after 24 h. The chitosan coating in alginate microbeads shows the enhanced attachment of flagellated bacteria on the surface of alginate microbeads. The bacteria-actuated microrobot with the enhanced flagellated bacteria attachment could show approximately 4.2 times higher average velocities than the control bacteria-actuated microrobot without chitosan coating. Consequently, the surface modification using chitosan coating enhanced the structural stability and the motility of the bacteria-based alginate microrobots.
Assuntos
Alginatos/metabolismo , Bactérias/metabolismo , Células Imobilizadas/metabolismo , Quitosana/metabolismo , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , MicroesferasRESUMO
Di-sulfide linked polyethylenimine coated gold nanoparticles (ssPEI-GNPs) of 20 nm size was prepared in order to deliver the genes to target site. DLS and TEM analysis demonstrated that the GNPs have average size of 13 nm in diameter. Upon coating the GNPs with ssPEI in the weight ratio of 1:3, the average hydrodynamic diameter of the ssPEI-GNPs was found to 19±1.14 nm and a zeta potential value 41±1.23 mV was observed. TEM analysis of ssPEI-GNPs demonstrated that the nanoparticles have spherical morphology. Thermogravemetric analysis of the prepared ssPEI-GNPs showed that the estimated composition of the ssPEI coated over the GNPs was approximately 5% (w/w). Gene expression capabilities of the nanoparticles were confirmed by fluorescent microscopy and luciferase assay, which demonstrated the transgene delivery capability of the ssPEI-GNPs. These results demonstrate that ssPEI-GNPs could be used as gene delivery agent.
Assuntos
Dissulfetos/química , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Técnicas de Transferência de Genes , Ouro/química , Nanopartículas Metálicas/química , Polietilenoimina/química , Animais , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Camundongos , Células NIH 3T3RESUMO
Nanofibers are one-dimensional nanomaterial in fiber form with diameter less than 1 µm and an aspect ratio (length/diameter) larger than 100:1. Among the different types of nanoparticle-loaded nanofiber systems, nanofibers loaded with magnetic nanoparticles have gained much attention from biomedical scientists due to a synergistic effect obtained from the unique properties of both the nanofibers and magnetic nanoparticles. These magnetic nanoparticle-encapsulated or -embedded nanofiber systems can be used not only for imaging purposes but also for therapy. In this review, we focused on recent advances in nanofibers loaded with magnetic nanoparticles, their biomedical applications, and future trends in the application of these nanofibers.
Assuntos
Nanopartículas de Magnetita/química , Nanofibras/química , Neoplasias/terapia , Animais , Humanos , Nanopartículas de Magnetita/uso terapêutico , Nanofibras/uso terapêutico , Polímeros/químicaRESUMO
Nanogels are hydrogels with nanometer-scale three-dimensional networks of physically or chemically cross-linked chains. Nanogels have attracted much interest in recent years for various biomedical applications such as drug delivery systems and bioimaging owing to their specific properties of size tunability and intrinsic hydrophilic surfaces. Nanogels are generally classified either as natural polymer-based or synthetic polymer-based nanogels. Natural polymer-based nanogels are considered better candidates for drug delivery than synthetic polymer-based nanogels. This review summarizes the role of natural polymer-based nanogels, especially carbohydrate-based nanogels as drug and gene delivery systems.
Assuntos
Carboidratos/química , DNA/administração & dosagem , DNA/genética , Terapia Genética/métodos , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Transfecção/métodos , Animais , Géis/química , HumanosRESUMO
Reactive oxygen species (ROS) drive processes in various pathological conditions serving as an attractive target for therapeutic strategies. This review highlights the development and use of ROS-dependent prodrug-based nanoscale carriers that has transformed many biomedical applications. Incorporating prodrugs into nanoscale carriers not only improves their stability and solubility but also enables site-specific drug delivery ultimately enhancing the therapeutic effectiveness of the nanoscale carriers. We critically examine recent advances in ROS-responsive nanoparticulate platforms, encompassing liposomes, polymeric nanoparticles, and inorganic nanocarriers. These platforms facilitate precise control over drug release upon encountering elevated ROS levels at disease sites, thereby minimizing off-target effects and maximizing therapeutic efficiency. Furthermore, we investigate the potential of combination therapies in which ROS-activated prodrugs are combined with other therapeutic agents and underscore their synergistic potential for treating multifaceted diseases. This comprehensive review highlights the immense potential of ROS-dependent prodrug-based nanoparticulate systems in revolutionizing biomedical applications; such nanoparticulate systems can facilitate selective and controlled drug delivery, reduce toxicity, and improve therapeutic outcomes for ROS-associated diseases.
Assuntos
Portadores de Fármacos , Nanopartículas , Pró-Fármacos , Espécies Reativas de Oxigênio , Pró-Fármacos/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Humanos , Nanopartículas/química , Portadores de Fármacos/química , Animais , Lipossomos/química , Sistemas de Liberação de Medicamentos , Polímeros/químicaRESUMO
Preeclampsia is a life-threatening pregnancy disorder. Current clinical assays cannot predict the onset of preeclampsia until the late 2nd trimester, which often leads to poor maternal and neonatal outcomes. Here we show that Raman spectroscopy combined with machine learning in pregnant patient plasma enables rapid, highly sensitive maternal metabolome screening that predicts preeclampsia as early as the 1st trimester with >82% accuracy. We identified 12, 15 and 17 statistically significant metabolites in the 1st, 2nd and 3rd trimesters, respectively. Metabolic pathway analysis shows multiple pathways corresponding to amino acids, fatty acids, retinol, and sugars are enriched in the preeclamptic cohort relative to a healthy pregnancy. Leveraging Pearson's correlation analysis, we show for the first time with Raman Spectroscopy that metabolites are associated with several clinical factors, including patients' body mass index, gestational age at delivery, history of preeclampsia, and severity of preeclampsia. We also show that protein quantification alone of proinflammatory cytokines and clinically relevant angiogenic markers are inadequate in identifying at-risk patients. Our findings demonstrate that Raman spectroscopy is a powerful tool that may complement current clinical assays in early diagnosis and in the prognosis of the severity of preeclampsia to ultimately enable comprehensive prenatal care for all patients.
RESUMO
Ex vivo assessment of drug response with conventional cell viability assays remains the standard practice for guiding initial therapeutic choices. However, such ensemble approaches fail to capture heterogeneities in treatment response and cannot identify early markers of response. Here, we leverage Raman spectroscopy (RS) as an accurate, low-cost, extraction-free, and label-free approach to track metabolic changes in cancer cells, spheroids, and organoids in response to cisplatin treatment. We identified 12 statistically significant metabolites in cells and 19 metabolites in spheroids and organoids as a function of depth. We show that the cisplatin treatment of 4T1 cells and spheroids results in a shift in metabolite levels; metabolites including nucleic acids such as DNA, 783 cm-1 with p = 0.00021 for cells; p = 0.02173 for spheroids, major amino acids such as threonine, 1338 cm-1 with p = 0.00045 for cells; p = 0.01022 for spheroids, proteins such as amide III, 1248 cm-1 with p = 0.00606 for cells; p = 0.00511 for spheroids serve as early predictors of response. Our RS findings were also applicable to canine-derived organoids, showing spatial variations in metabolic changes as a function of organoid depth in response to cisplatin. Further, the metabolic pathways such as tricarboxylic acid (TCA)/citric acid cycle and glyoxylate and dicarboxylate metabolism that drive drug response showed significant differences based on organoid depth, replicating the heterogeneous treatment response seen in solid tumors where there is a difference from the periphery to the tumor core. Our study showcases the versatility of RS as a predictive tool for treatment response applicable from cells to organotypic cultures, that has the potential to decrease animal burden and readout time for preclinical drug efficacy.
Assuntos
Antineoplásicos , Cisplatino , Organoides , Análise Espectral Raman , Esferoides Celulares , Cisplatino/farmacologia , Organoides/metabolismo , Organoides/efeitos dos fármacos , Organoides/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Animais , Cães , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Camundongos , HumanosRESUMO
Ulcerative colitis is a chronic condition in which a dysregulated immune response contributes to the acute intestinal inflammation of the colon. Current clinical therapies often exhibit limited efficacy and undesirable side effects. Here, programmable nanomicelles were designed for colitis treatment and loaded with RU.521, an inhibitor of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. STING-inhibiting micelles (SIMs) comprise hyaluronic acid-stearic acid conjugates and include a reactive oxygen species (ROS)-responsive thioketal linker. SIMs were designed to selectively accumulate at the site of inflammation and trigger drug release in the presence of ROS. Our in vitro studies in macrophages and in vivo studies in a murine model of colitis demonstrated that SIMs leverage HA-CD44 binding to target sites of inflammation. Oral delivery of SIMs to mice in both preventive and delayed therapeutic models ameliorated colitis's severity by reducing STING expression, suppressing the secretion of proinflammatory cytokines, enabling bodyweight recovery, protecting mice from colon shortening, and restoring colonic epithelium. In vivo end points combined with metabolomics identified key metabolites with a therapeutic role in reducing intestinal and mucosal inflammation. Our findings highlight the significance of programmable delivery platforms that downregulate inflammatory pathways at the intestinal mucosa for managing inflammatory bowel diseases.