Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biochemistry ; 63(9): 1214-1224, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38679935

RESUMO

A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (1O2*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of 1O2* in photodamage and cell signaling, few studies directly correlate 1O2* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of 1O2* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of 1O2* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of 1O2* in chlorophyll-containing photosynthetic membranes. We find that the apparent 1O2* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of 1O2* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of 1O2* during high light. Upon saturation of NPQ, the concentration of 1O2* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).


Assuntos
Fotossíntese , Oxigênio Singlete , Tilacoides , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Tilacoides/metabolismo , Tilacoides/química , Detecção de Spin/métodos , Clorofila/metabolismo , Clorofila/química , Spinacia oleracea/metabolismo , Spinacia oleracea/química , Luz
2.
Photosynth Res ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441791

RESUMO

Photosynthetic light-dependent reactions occur in thylakoid membranes where embedded proteins capture light energy and convert it to chemical energy in the form of ATP and NADPH for use in carbon fixation. One of these integral membrane proteins is Photosystem I (PSI). PSI catalyzes light-driven transmembrane electron transfer from plastocyanin (Pc) to oxidized ferredoxin (Fd). Electrons from reduced Fd are used by the enzyme ferredoxin-NADP+ reductase (FNR) for the reduction of NADP+ to NADPH. Fd and Pc are both small soluble proteins whereas the larger FNR enzyme is associated with the membrane. To investigate electron shuttling between these diffusible and embedded proteins, thylakoid photoreduction of NADP+ was studied. As isolated, both spinach and cyanobacterial thylakoids generate NADPH upon illumination without extraneous addition of Fd. These findings indicate that isolated thylakoids either (i) retain a "pool" of Fd which diffuses between PSI and membrane bound FNR or (ii) that a fraction of PSI is associated with Fd, with the membrane environment facilitating PSI-Fd-FNR interactions which enable multiple turnovers of the complex with a single Fd. To explore the functional association of Fd with PSI in thylakoids, electron paramagnetic resonance (EPR) spectroscopic methodologies were developed to distinguish the signals for the reduced Fe-S clusters of PSI and Fd. Temperature-dependent EPR studies show that the EPR signals of the terminal [4Fe-4S] cluster of PSI can be distinguished from the [2Fe-2S] cluster of Fd at > 30 K. At 50 K, the cw X-band EPR spectra of cyanobacterial and spinach thylakoids reduced with dithionite exhibit EPR signals of a [2Fe-2S] cluster with g-values gx = 2.05, gy = 1.96, and gz = 1.89, confirming that Fd is present in thylakoid preparations capable of NADP+ photoreduction. Quantitation of the EPR signals of P700+ and dithionite reduced Fd reveal that Fd is present at a ratio of ~ 1 Fd per PSI monomer in both spinach and cyanobacterial thylakoids. Light-driven electron transfer from PSI to Fd in thylakoids confirms Fd is functionally associated (< 0.4 Fd/PSI) with the acceptor end of PSI in isolated cyanobacterial thylakoids. These EPR experiments provide a benchmark for future spectroscopic characterization of Fd interactions involved in multistep relay of electrons following PSI charge separation in the context of photosynthetic thylakoid microenvironments.

3.
Photosynth Res ; 143(2): 183-192, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31925629

RESUMO

Worldwide there is a large research investment in developing solar fuel systems as clean and sustainable sources of energy. The fundamental mechanisms of natural photosynthesis can provide a source of inspiration for these studies. Photosynthetic reaction center (RC) proteins capture and convert light energy into chemical energy that is ultimately used to drive oxygenic water-splitting and carbon fixation. For the light energy to be used, the RC communicates with other donor/acceptor components via a sophisticated electron transfer scheme that includes electron transfer reactions between soluble and membrane bound proteins. Herein, we reengineer an inherent interprotein electron transfer pathway in a natural photosynthetic system to make it photocatalytic for aqueous H2 production. The native electron shuttle protein ferredoxin (Fd) is used as a scaffold for binding of a ruthenium photosensitizer and H2 catalytic function is imparted to its partner protein, ferredoxin-NADP+-reductase (FNR), by attachment of cobaloxime molecules. We find that this 2-protein biohybrid system produces H2 in aqueous solutions via light-induced interprotein electron transfer reactions (TON > 2500 H2/FNR), providing insight about using native protein-protein interactions as a method for fuel generation.


Assuntos
Hidrogênio/metabolismo , Luz , Anabaena/enzimologia , Catálise/efeitos da radiação , Domínio Catalítico , Transporte de Elétrons/efeitos da radiação , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , NADP/metabolismo , Concentração Osmolar , Fármacos Fotossensibilizantes/química , Rutênio/química , Fatores de Tempo
4.
J Am Chem Soc ; 140(34): 10710-10720, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30028604

RESUMO

Non-noble-metal, thin-film oxides are widely investigated as promising catalysts for oxygen evolution reactions (OER). Amorphous cobalt oxide films electrochemically formed in the presence of borate (CoBi) and phosphate (CoPi) share a common cobaltate domain building block, but differ significantly in OER performance that derives from different electron-proton charge transport properties. Here, we use a combination of L edge synchrotron X-ray absorption (XAS), resonant X-ray emission (RXES), resonant inelastic X-ray scattering (RIXS), resonant Raman (RR) scattering, and high-energy X-ray pair distribution function (PDF) analyses that identify electronic and structural factors correlated to the charge transport differences for CoPi and CoBi. The analyses show that CoBi is composed primarily of cobalt in octahedral coordination, whereas CoPi contains approximately 17% tetrahedral Co(II), with the remainder in octahedral coordination. Oxygen-mediated 4 p-3 d hybridization through Co-O-Co bonding was detected by RXES and the intersite dd excitation was observed by RIXS in CoBi, but not in CoPi. RR shows that CoBi resembles a disordered layered LiCoO2-like structure, whereas CoPi is amorphous. Distinct domain models in the nanometer range for CoBi and CoPi have been proposed on the basis of the PDF analysis coupled to XAS data. The observed differences provide information on electronic and structural factors that enhance oxygen evolving catalysis performance.

5.
Biochemistry ; 56(42): 5679-5690, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28956602

RESUMO

Bacterial microcompartments (BMCs) are proteinaceous organelles that encapsulate enzymes involved in CO2 fixation (carboxysomes) or carbon catabolism (metabolosomes). Metabolosomes share a common core of enzymes and a distinct signature enzyme for substrate degradation that defines the function of the BMC (e.g., propanediol or ethanolamine utilization BMCs, or glycyl-radical enzyme microcompartments). Loci encoding metabolosomes also typically contain genes for proteins that support organelle function, such as regulation, transport of substrate, and cofactor (e.g., vitamin B12) synthesis and recycling. Flavoproteins are frequently among these ancillary gene products, suggesting that these redox active proteins play an undetermined function in many metabolosomes. Here, we report the first characterization of a BMC-associated flavodoxin (Fld1C), a small flavoprotein, derived from the noncanonical 1,2-propanediol utilization BMC locus (PDU1C) of Lactobacillus reuteri. The 2.0 Å X-ray structure of Fld1C displays the α/ß flavodoxin fold, which noncovalently binds a single flavin mononucleotide molecule. Fld1C is a short-chain flavodoxin with redox potentials of -240 ± 3 mV oxidized/semiquinone and -344 ± 1 mV semiquinone/hydroquinone versus the standard hydrogen electrode at pH 7.5. It can participate in an electron transfer reaction with a photoreductant to form a stable semiquinone species. Collectively, our structural and functional results suggest that PDU1C BMCs encapsulate Fld1C to store and transfer electrons for the reactivation and/or recycling of the B12 cofactor utilized by the signature enzyme.


Assuntos
Cobamidas/química , Mononucleotídeo de Flavina/química , Flavodoxina/química , Limosilactobacillus reuteri/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Cobamidas/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavodoxina/metabolismo , Limosilactobacillus reuteri/metabolismo
6.
Acc Chem Res ; 49(5): 835-43, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27104312

RESUMO

Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate that molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule-nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of supramolecular photocatalyst based on the [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) light-harvesting module with cobaloxime-based catalyst module are compared, with progress in stabilizing photoinduced charge separation identified. These same modules embedded in the small electron transfer protein ferredoxin exhibit much longer charge-separation, enabled by stepwise electron transfer through the native [2Fe-2S] cofactor. We anticipate that the use of interchangeable, molecular modules which can interact in different coordination geometries or within entirely different structural platforms will provide important fundamental insights into the effect of environment on parameters such as electron transfer and charge separation, and ultimately drive more efficient designs for artificial photosynthesis.


Assuntos
Complexos de Coordenação/química , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/química , Catálise , Cobalto , Ferredoxinas/química , Luz , Nanopartículas/química , Rubídio
8.
J Phys Chem Lett ; : 8000-8006, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079038

RESUMO

Bacterial microcompartments (BMCs) are self-assembling, selectively permeable protein shells that encapsulate enzymes to enhance catalytic efficiency of segments of metabolic pathways through means of confinement. The modular nature of BMC shells' structure and assembly enables programming of shell permeability and underscores their promise in biotechnology engineering efforts for applications in industry, medicine, and clean energy. Realizing this potential requires methods for encapsulation of abiotic molecules, which have been developed here for the first time. We report in vitro cargo loading of BMC shells with ruthenium photosensitizers (RuPS) by two approaches─one involving site-specific covalent labeling and the other driven by diffusion, requiring no specific interactions between cargo molecules and shell proteins. The highly stable shells retain encapsulated cargo over 1 week without egress and preserve RuPS photophysical activity. This study is an important foundation for further work that will converge biological BMC architecture with synthetic chemistry to facilitate biohybrid photocatalysis.

9.
bioRxiv ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071365

RESUMO

Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B12) reductase and, curiously, found it in many unrelated BMC types that do not employ B12 cofactors. We propose NAD+ regeneration as a new function of this enzyme and name it MNdh, for Metabolosome NADH dehydrogenase. Its partner shell protein BMC-TSE assists in passing the generated electrons to the outside. We support this hypothesis with bioinformatic analysis, functional assays, EPR spectroscopy, protein voltammetry and structural modeling verified with X-ray footprinting. This discovery represents a new paradigm for the BMC field, identifying a new, widely occurring route for cofactor recycling and a new function for the shell as separating redox environments.

10.
J Am Chem Soc ; 135(36): 13246-9, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23985048

RESUMO

The direct conversion of sunlight into fuel is a promising means for the production of storable renewable energy. Herein, we use Nature's specialized photosynthetic machinery found in the Photosystem I (PSI) protein to drive solar fuel production from a nickel diphosphine molecular catalyst. Upon exposure to visible light, a self-assembled PSI-[Ni(P2(Ph)N2(Ph))2](BF4)2 hybrid generates H2 at a rate 2 orders of magnitude greater than rates reported for photosensitizer/[Ni(P2(Ph)N2(Ph))2](BF4)2 systems. The protein environment enables photocatalysis at pH 6.3 in completely aqueous conditions. In addition, we have developed a strategy for incorporating the Ni molecular catalyst with the native acceptor protein of PSI, flavodoxin. Photocatalysis experiments with this modified flavodoxin demonstrate a new mechanism for biohybrid creation that involves protein-directed delivery of a molecular catalyst to the reducing side of Photosystem I for light-driven catalysis. This work further establishes strategies for constructing functional, inexpensive, earth-abundant solar fuel-producing PSI hybrids that use light to rapidly produce hydrogen directly from water.


Assuntos
Hidrogênio/metabolismo , Luz , Níquel/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/efeitos da radiação , Catálise , Hidrogênio/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/metabolismo , Complexo de Proteína do Fotossistema I/química
11.
Biochim Biophys Acta Bioenerg ; 1864(3): 148974, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001790

RESUMO

Photosynthetic conversion of light energy into chemical energy occurs in sheet-like membrane-bound compartments called thylakoids and is mediated by large integral membrane protein-pigment complexes called reaction centers (RCs). Oxygenic photosynthesis of higher plants, cyanobacteria and algae requires the symbiotic linking of two RCs, photosystem II (PSII) and photosystem I (PSI), to split water and assimilate carbon dioxide. Worldwide there is a large research investment in developing RC-based hybrids that utilize the highly evolved solar energy conversion capabilities of RCs to power catalytic reactions for solar fuel generation. Of particular interest is the solar-powered production of H2, a clean and renewable energy source that can replace carbon-based fossil fuels and help provide for ever-increasing global energy demands. Recently, we developed thylakoid membrane hybrids with abiotic catalysts and demonstrated that photosynthetic Z-scheme electron flow from the light-driven water oxidation at PSII can drive H2 production from PSI. One of these hybrid systems was created by self-assembling Pt-nanoparticles (PtNPs) with the stromal subunits of PSI that extend beyond the membrane plane in both spinach and cyanobacterial thylakoids. Using PtNPs as site-specific probe molecules, we report the electron microscopic (EM) imaging of oligomeric structure, location and organization of PSI in thylakoid membranes and provide the first direct visualization of photosynthetic Z-scheme solar water-splitting biohybrids for clean H2 production.


Assuntos
Cianobactérias , Nanopartículas , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Água/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/metabolismo
12.
J Phys Chem B ; 127(47): 10108-10117, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37980604

RESUMO

This publication presents the first comprehensive experimental study of electron spin coherences in photosynthetic reaction center proteins, specifically focusing on photosystem I (PSI). The ultrafast electron transfer in PSI generates spin-correlated radical pairs (SCRPs), which are entangled spin pairs formed in well-defined spin states (Bell states). Since their discovery in our group in the 1980s, SCRPs have been extensively used to enhance our understanding of structure-function relationships in photosynthetic proteins. More recently, SCRPs have been utilized as tools for quantum sensing. Electron spin decoherence poses a significant challenge in realizing practical applications of electron spin qubits, particularly the creation of quantum entanglement between multiple electron spins. This work is focused on the systematic characterization of decoherence in SCRPs of PSI. These decoherence times were measured as electron spin echo decay times, termed phase memory times (TM), at various temperatures. Decoherence was recorded on both transient SCRP states P700+A1- and thermalized states. Our study reveals that TM exhibits minimal dependence on the biological species, biochemical treatment, and paramagnetic species. The analysis indicates that nuclear spin diffusion and instantaneous diffusion mechanisms alone cannot explain the observed decoherence. As a plausible explanation we discuss the assumption that the low-temperature dynamics of methyl groups in the protein surrounding the unpaired electron spin centers is the main factor governing the loss of the spin coherence in PSI.

13.
Nano Lett ; 11(8): 3091-8, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21714495

RESUMO

Silver metal nanoparticle (NP) enhanced fluorescence is investigated in thin films of cyanobacterial Photosystem I trimer complexes (PSI) by correlating confocal laser scanning microscopy, dark-field imaging, and fluorescence lifetime measurements. PSI represents an interesting light-harvesting complex with a 20 nm diameter that is not uniformly contained within the surface-localized plasmon field of the NPs. With weak far-field illumination, 5- to 20-fold fluorescence enhancement is observed for PSI complexes adjacent to NPs, arising from efficient nanoparticle light collection and subsequent localized, surface plasmon excitation of PSI. Enhanced PSI fluorescence is detected most prominently near "rafts" of aggregated NPs that more completely fill the confocal field of view. These results demonstrate opportunities to probe energy transfer within photosynthetic complexes using plasmonic excitation and to design nanostructures for optimizing artificial light-harvesting systems.


Assuntos
Nanopartículas Metálicas , Complexo de Proteína do Fotossistema I/química , Microscopia Confocal , Microscopia Eletrônica de Varredura , Ressonância de Plasmônio de Superfície
14.
Chem Sci ; 13(22): 6502-6511, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35756516

RESUMO

Flavin chemistry is ubiquitous in biological systems with flavoproteins engaged in important redox reactions. In photosynthesis, flavin cofactors are used as electron donors/acceptors to facilitate charge transfer and accumulation for ultimate use in carbon fixation. Following light-induced charge separation in the photosynthetic transmembrane reaction center photosystem I (PSI), an electron is transferred to one of two small soluble shuttle proteins, a ferredoxin (Fd) or a flavodoxin (Fld) (the latter in the condition of Fe-deficiency), followed by electron transfer to the ferredoxin-NADP+ reductase (FNR) enzyme. FNR accepts two of these sequential one electron transfers, with its flavin adenine dinucleotide (FAD) cofactor becoming doubly reduced, forming a hydride which is then passed onto the substrate NADP+ to form NADPH. The two one-electron potentials (oxidized/semiquinone and semiquinone/hydroquinone) are similar to each other with the FNR protein stabilizing the hydroquinone, making spectroscopic detection of the intermediate semiquinone state difficult. We employed a new biohybrid-based strategy that involved truncating the native three-protein electron transfer cascade PSI → Fd → FNR to a two-protein cascade by replacing PSI with a molecular Ru(ii) photosensitizer (RuPS) which is covalently bound to Fd and Fld to form biohybrid complexes that successfully mimic PSI in light-driven NADPH formation. RuFd → FNR and RuFld → FNR electron transfer experiments revealed a notable distinction in photosynthetic charge accumulation that we attribute to the different protein cofactors [2Fe2S] and flavin. After freeze quenching the two-protein systems under illumination, an intermediate semiquinone state of FNR was readily observed with cw X-band EPR spectroscopy. The increased spectral resolution from selective deuteration allowed EPR detection of inter-flavoprotein electron transfer. This work establishes a biohybrid experimental approach for further studies of photosynthetic light-driven electron transfer chain that culminates at FNR and highlights nature's mechanisms that couple single electron transfer chemistry to charge accumulation, providing important insight for the development of photon-to-fuel schemes.

15.
J Am Chem Soc ; 133(41): 16334-7, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21923143

RESUMO

Solar energy conversion of water into the environmentally clean fuel hydrogen offers one of the best long-term solutions for meeting future energy demands. Nature provides highly evolved, finely tuned molecular machinery for solar energy conversion that exquisitely manages photon capture and conversion processes to drive oxygenic water-splitting and carbon fixation. Herein, we use one of Nature's specialized energy-converters, the Photosystem I (PSI) protein, to drive hydrogen production from a synthetic molecular catalyst comprised of inexpensive, earth-abundant materials. PSI and a cobaloxime catalyst self-assemble, and the resultant complex rapidly produces hydrogen in aqueous solution upon exposure to visible light. This work establishes a strategy for enhancing photosynthetic efficiency for solar fuel production by augmenting natural photosynthetic systems with synthetically tunable abiotic catalysts.


Assuntos
Biocatálise , Fontes de Energia Bioelétrica , Hidrogênio/metabolismo , Luz , Compostos Organometálicos/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Energia Solar , Hidrogênio/química , Modelos Moleculares , Compostos Organometálicos/química , Fotossíntese , Complexo de Proteína do Fotossistema I/química
16.
J Phys Chem B ; 125(16): 4025-4030, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33877826

RESUMO

Photosynthetic integral membrane reaction center (RC) proteins capture and convert sunlight into chemical energy via efficient charge separation achieved through a series of rapid, photoinitiated electron transfer steps. These fast electron transfers create an entangled spin qubit (radical) pair that contains detailed information about the weak magnetic interactions, structure, and dynamics of localized protein environments involved in charge separation events. Herein, we investigate how these entangled electron spin qubits interact with nuclear spins of the protein environment using the high spectral resolution of 130 GHz electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR). Spectroscopic interrogation enabled the observation and probing of protons located in the electron transfer pathway between the membrane-spanning electron pair P+QA- (where P+ is the primary donor, a special pair of bacteriochlorophylls, and QA is the primary quinone acceptor) in the bacterial RC. Spectroscopic analysis reveals hydrogen-bonding interactions involved in regulating the route that light-induced electrons travel through the RC protein during charge separation.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Elétrons , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo
17.
Biochemistry ; 49(45): 9682-4, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20961074

RESUMO

Electron paramagnetic resonance (EPR) was used to study light-induced electron transfer in Photosystem I-flavodoxin complexes. Deuteration of flavodoxin enables the signals of the reduced flavin acceptor and oxidized primary donor, P(700)(+), to be well-resolved at X- and D-band EPR. In dark-adapted samples, photoinitiated interprotein electron transfer does not occur at 5 K. However, for samples prepared in dim light, significant interprotein electron transfer occurs at 5 K and a concomitant loss of the spin-correlated radical pair P(+)A(1A)(-) signal is observed. These results indicate a light-induced reorientation of flavodoxin in the PSI docking site that allows a high quantum yield efficiency for the interprotein electron transfer reaction.


Assuntos
Flavodoxina/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons/efeitos da radiação , Flavodoxina/efeitos da radiação , Cinética , Luz , Oxirredução , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/efeitos da radiação , Plastocianina/metabolismo , Synechococcus/metabolismo , Tilacoides/metabolismo
18.
J Phys Chem B ; 123(35): 7536-7544, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31405283

RESUMO

Following light-generated electron transfer reactions in photosynthetic reaction center proteins, an entangled spin qubit (radical) pair is created. The exceptional sensitivity of entangled quantum spin states to weak magnetic interactions, structure, and local environments was used to monitor the directionality of electron transfer in Photosystem I (PSI). Electron paramagnetic resonance (EPR) spectra of radical pairs formed via each symmetric branch of cofactors, A or B, exhibit distinctive line shapes. By photochemical reduction and biochemical modification of PSI we created samples where the radical pair(s) from (1) only A branch, (2) only B branch, or (3) both A and B branches are detectable. These PSI samples were used to analyze the asymmetry of electron transfer as a function of temperature, freezing condition, and temperature cycling. The temperature dependency agrees with a dynamic model in which the conformational states of the protein regulate the directionality of electron transfer. High spectral resolution afforded by high-frequency (130 GHz) EPR, combined with extra resolution afforded by deuterated proteins, provides new mechanistic insight via structural and environmental sensitivity of the entangled electron spins of photogenerated radical pairs.


Assuntos
Complexo de Proteína do Fotossistema I/química , Teoria Quântica , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Radicais Livres/química , Complexo de Proteína do Fotossistema I/metabolismo
19.
Biochemistry ; 47(35): 9251-7, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18690706

RESUMO

Electron paramagnetic resonance (EPR) was used to simultaneously study radiation-induced cofactor reduction and damaging radical formation in single crystals of the bacterial reaction center (RC). Crystals of Fe-removed/Zn-replaced RC protein from Rhodobacter ( R.) sphaeroides R26 were irradiated with varied radiation doses at cryogenic temperature and analyzed for radiation-induced free radical formation and alteration of light-induced photosynthetic electron transfer activity using high-field (HF) D-band (130 GHz) and X-band (9.5 GHz) EPR spectroscopies. These analyses show that the formation of radiation-induced free radicals saturated at doses 1 order of magnitude smaller than the amount of radiation at which protein crystals lose their diffraction quality, while light-induced RC activity was found to be lost at radiation doses at least 1 order of magnitude lower than the dose at which radiation-induced radicals exhibited saturation. HF D-band EPR spectra provide direct evidence for radiation-induced reduction of the quinones and possibly other cofactors. These results demonstrate that substantial radiation damage is likely to have occurred during X-ray diffraction data collection used for photosynthetic RC structure determination. Thus, both radiation-induced loss of photochemical activity in RC crystals and reduction of the quinones are important factors that must be considered when correlating spectroscopic and crystallographic measurements of quinone site structures.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres , Ferro/química , Modelos Moleculares , Conformação Proteica , Rhodobacter sphaeroides/metabolismo , Difração de Raios X , Zinco/química
20.
Biochemistry ; 47(44): 11387-9, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18847224

RESUMO

Femtosecond transient absorbance spectroscopy was applied to the study of primary electron transfer in single reaction center crystals from Rhodobacter sphaeroides. Polarized transient absorption spectra of individual crystals are shown to correlate with polarized ground-state absorption spectra and to track cofactor transition moment directions calculated from the crystallographic structure. Electron transfer from the bacteriochlorophyll dimer to the bacteriopheophytin acceptor was found to be multiphasic in crystals and approximately 2-fold slower than in solution. This work demonstrates the ability to resolve ultrafast photosynthetic function in single crystals and allows ultrafast function to be directly correlated with structure.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Cristalização , Cristalografia por Raios X , Transporte de Elétrons , Cinética , Modelos Moleculares , Complexos Multiproteicos/química , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Soluções , Espectrofotometria , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA