Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Res ; 238(Pt 2): 116909, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673119

RESUMO

Xenobiotic pollution in environment is a potential risk to marine life, and human health. Nanobiotechnology is an advanced and emerging solution for the removal of environmental pollutants. Adsorption-based technologies are being used to alleviate the global prevalence of xenobiotics like dyes, due to their high efficacy and cost effectiveness. Current study explored the potential of nanobiochar syntehsized via ultrasonication and centrifugation from rice husk for dye removal from water. It involves the synthesis of nanobiochar from rice husk biochar for removal of Safranin, Malachite green, and a mixture of both from aqueous water. Biochar was synthesized through pyrolysis at 600 °C for 2 h. To convert it into nanobiochar, sonication and centrifugation techniques were applied. The yield obtained was 27.5% for biochar and 0.9% for nanobiochar. Nanobiochar analysis through Fourier-Transform Spectrometer (FTIR), X-ray Power Diffraction (XRD) and scanning electron microscopy (SEM) suggested its crystalline nature having minerals rich in silicon, with a cracked and disintegrated carbon structure due to high temperature and processing treatments. Removal of dyes by nanobiochar was evaluated by changing different physical parameters i.e., nanobiochar dose, pH, and temperature. Pseudo-first order model and pseudo-second order model were applied to studying the adsorption kinetics mechanism. Kinetics for adsorption of dyes followed the pseudo-second order model suggesting the removal of dyes by process of chemical sorption. High adsorption was found at a higher concentration of nanobiochar, high temperature, and neutral pH. Maximum elimination percentages of safranin, malachite green, and a mixture of dyes were obtained as 91.7%, 87.5%, and 85% respectively. We conclude that nanobiochar could be a solution for dye removal from aqueous media.


Assuntos
Oryza , Poluentes Químicos da Água , Humanos , Oryza/química , Água , Corantes/química , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
2.
Mar Drugs ; 18(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327517

RESUMO

Seaweeds are broadly distributed and represent an important source of secondary metabolites (e.g., halogenated compounds, polyphenols) eliciting various pharmacological activities and playing a relevant ecological role in the anti-epibiosis. Importantly, host (as known as basibiont such as algae)-microbe (as known as epibiont such as bacteria) interaction (as known as halobiont) is a driving force for coevolution in the marine environment. Nevertheless, halobionts may be fundamental (harmless) or detrimental (harmful) to the functioning of the host. In addition to biotic factors, abiotic factors (e.g., pH, salinity, temperature, nutrients) regulate halobionts. Spatiotemporal and functional exploration of such dynamic interactions appear crucial. Indeed, environmental stress in a constantly changing ocean may disturb complex mutualistic relations, through mechanisms involving host chemical defense strategies (e.g., secretion of secondary metabolites and antifouling chemicals by quorum sensing). It is worth mentioning that many of bioactive compounds, such as terpenoids, previously attributed to macroalgae are in fact produced or metabolized by their associated microorganisms (e.g., bacteria, fungi, viruses, parasites). Eventually, recent metagenomics analyses suggest that microbes may have acquired seaweed associated genes because of increased seaweed in diets. This article retrospectively reviews pertinent studies on the spatiotemporal and functional seaweed-associated microbiota interactions which can lead to the production of bioactive compounds with high antifouling, theranostic, and biotechnological potential.


Assuntos
Ecologia , Indústrias , Microbiota , Alga Marinha/química , Animais , Humanos
3.
AAPS PharmSciTech ; 21(8): 323, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33200249

RESUMO

Crude ginger has been used to treat wounds since ancient times till nowadays. The present study aimed at designing and characterizing topical hydrogel films loaded with ginger extract for wound healing in animal model. The hydrogel films were prepared using PVA and gelatin. The prepared films were evaluated for FTIR analysis, surface morphology, pH, swelling behavior, in vitro release, and % drug content. The wound-healing activity of the extract-loaded hydrogel films was compared with commercially available Silver Sulfadiazine® cream. The drug was compatible with the selected polymers and indicated the suitability of the selected polymers for preparation of topical hydrogel films. The SEM images clearly indicated porous structure of the prepared hydrogel films. Slight changes were observed in pH, ranging from 4.98 ± 0.079 in the beginning of the study to 4.9 ± 0.58 in the end. The swelling percentage after 8 h was 257.7%. The films released 78.7 ± 1.7% of the drug in 250 min. The percent drug content was 97.78 ± 5% which did not change significantly during the storage period. The hydrogel films showed similar wound-healing activity as compared to the commercial product (p > 0.05; ANOVA), while greater wound-healing activity as compared to the control group (p < 0.05; ANOVA) evidenced by intensive collagen formation in histopathological analysis.


Assuntos
Queimaduras/patologia , Gelatina/química , Metilgalactosídeos/química , Cicatrização , Animais , Técnicas In Vitro , Modelos Animais , Extratos Vegetais , Sulfadiazina de Prata
4.
AAPS PharmSciTech ; 21(6): 211, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737606

RESUMO

Transdermal application of analgesics allows efficient and painless delivery of medication with minimum side effect. This study was designed with the aim to formulate and characterize dexibuprofen-capsaicin emulgel for transdermal drug delivery with improved anti-inflammatory and analgesic effects. The emulgel was prepared and evaluated for physical examination, stability, spreadability, rheological behavior, viscosity, drug content determination, FTIR analysis, and ex vivo studies. Anti-inflammatory (carrageenan-induced paw edema) and analgesic (hot plate latency test) effects were determined in Sprague-Dawley rats. The dexibuprofen-capsaicin emulgel showed good physical appearance and stability having average pH 5.5 to 6.0, conductivity 73-76 s/m, spreadability (12-)17 g cm/s, drug content 102.84% ± 0.53 (for capsaicin) and 94.09% ± 0.41 (for dexibuprofen), and FTIR compatibility. It was noted that 86.956% ± 1.46 (with 100 mg menthol), 76.687% ± 1.21 (75 mg menthol), and 65.543% ± 1.71 (without menthol) of capsaicin were released. Similarly 81.342% ± 1.21 (with 100 mg menthol), 72.321% ± 1.31 (75 mg menthol), and 52.462% ± 1.23 (without menthol) of dexibuprofen were released. The cumulative amount of capsaicin permeated through rabbit skin was 9.83 ± 0.037 µg/cm2 with 100 mg menthol (as permeation enhancer), 7.23 ± 0.037 µg/cm2 with 75 mg menthol, and 2.23 ± 0.061 µg/cm2 without menthol after 6.5 h. The permeation of dexibuprofen was 19.53 ± 0.054 µg/cm2, 13.87 ± 0.032 µg/cm2, and 3.83 ± 0.074 µg/cm2. Carrageenan-induced paw edema of rat was effectively inhibited by the optimized emulgel. Similarly it was observed that DCE5 shows higher analgesic activity compared with marketed diclofenac sodium emulgel (Dicloran®). The conclusion of this research study evidently indicated a promising synergistic potential of dexibuprofen-capsaicin emulgel as an alternative to the conventional topical dosage form.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Capsaicina/química , Géis/química , Ibuprofeno/análogos & derivados , Administração Cutânea , Analgésicos/administração & dosagem , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Carragenina/farmacologia , Edema/tratamento farmacológico , Emulsões , Ibuprofeno/química , Masculino , Coelhos , Ratos , Ratos Sprague-Dawley , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos , Viscosidade
5.
Pak J Pharm Sci ; 31(6 (Supplementary): 2733-2736, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30587487

RESUMO

An antifungal compound 9, 10-dihydrophenanthrene - 2 - carboxylic acid was isolated from a marine derived bacterium Pseudomonas putida isolated from surface water samples of Karachi fish harbor coast line. The structure was explored using extensive 1D- and 2D-NMR spectroscopic techniques. The compound was found to be active against fungal strains obtained from clinical samples whereas strong activity was noted against Candida albicans with a MIC value of 20µg/ml, as the purified compound showed promising anticandidal activity a multidisciplinary approach is needed to explore further this compound as potential pharmacological lead compound against Candida spp and will add in the global hunt for clinically functional antifungal agents.


Assuntos
Antifúngicos/farmacologia , Ácidos Carboxílicos/farmacologia , Fenantrenos/farmacologia , Pseudomonas putida , Animais , Antifúngicos/química , Antifúngicos/isolamento & purificação , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Ácidos Carboxílicos/química , Ácidos Carboxílicos/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana/métodos , Fenantrenos/química , Fenantrenos/isolamento & purificação , Pseudomonas putida/isolamento & purificação
6.
Pak J Pharm Sci ; 31(4(Supplementary)): 1549-1553, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30058547

RESUMO

Bacterial resistance is spreading globally due to excessive use of antibiotics, making it one of our times biggest challenges. To address this issue present study was conducted to evaluate the antibacterial activity of copper oxide nanoparticles against methicillin-resistant S. aureus (MRSA). Copper oxide nanoparticles were synthesized by chemical precipitation method and were characterized by UV-Visible, FT-IR spectroscopy, X-ray diffraction (XRD) and Scanning Electron Microscopy. These nanoparticles of 27nm were assessed for antibacterial activity using disc diffusion method. Our results showed superb inhibitory effects of CuO nanoparticles with increase in concentration and complete inhibition was recorded against tested strains of S. aureus at 100µl/ml and 125µl/ml concentration. The study concludes that the drugs which do not show any inhibitory effects against resistant bugs could be augmented with CuO nanoparticles to achieve the treatment goal.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Cobre/farmacologia , Nanopartículas Metálicas/administração & dosagem , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Cobre/química , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Nanopartículas Metálicas/química , Staphylococcus aureus Resistente à Meticilina/fisiologia , Testes de Sensibilidade Microbiana/métodos
7.
Pak J Pharm Sci ; 30(6(Supplementary)): 2393-2397, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29188775

RESUMO

The emergence of multi drug resistant microbial pathogens has become a global health challenge and set a dire requirement of searching new effective antimicrobials. Soil is an ultimate reservoir of biologically active micro flora, which harbors trillions of microbial strains producing compounds of commercial interest. Hence aim of the present study was an attempt to isolate and identify the antibiotic producing microbial strains from the red soil of Himalayan an unexplored region of Pakistan. In this study from 10 different soil samples only one bacterial strain was isolated capable of antimicrobial activity. Strain was identified by biochemical characteristics and final identification was done by API 20 NE kit which showed 99% homology with P. aeruginosa. Hence the strain was identified as P. aeruginosa S2. Antibacterial and antifungal activity of the P. aeruginosa S2 showed that Staphylococcus aureus was extremely sensitive to it with a zone of inhibition of 42mm. Staphylococcus epidermidis, Enterobacter aerogenes, Aspergillus fumigatus and Candida albicans were also inhibited by the isolated strain. Effect of Glycerol, Copper sulphate (CuSo4), Sodium sulphate (Na2SO4) and Glycerol on antibiotic production was also evaluated by supplementing growth media with these chemicals. Pseudomonas aeruginosa was grown in bulk quantity using solid state fermentation and crude extract was prepared using organic solvents and subjected to silica gel column chromatography for purification of active compound. Purified compound showed antibacterial against human pathogens. The unexplored Kashmir Himalayas are of great significance because of its richness in biodiversity and need to be explored for isolation and characterization of native microbes for biologically active secondary metabolites. This untouched region may be considered as hub of new antimicrobials and may have applications in natural product-based drug discovery.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Pseudomonas aeruginosa/metabolismo , Microbiologia do Solo , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Paquistão , Pseudomonas aeruginosa/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento
8.
Pak J Pharm Sci ; 30(5(Supplementary)): 1997-2002, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29105634

RESUMO

This study was planned in order to investigate effective essential oils to inhibit in-vitro growth of Methicillin resistant Staphylococcus aureus (MRSA). In this study using disc diffusion method anti MRSA activity of ten diverse essential oils extracted from traditional plants namely Thymus vulgaris L, Mentha pulegium, Ocimum sanctum, Mentha piperita, Cymbopogon citratus, Rosmarinus officinalis L., Cortex cinnamom, Citrus nobilis x Citrus deliciosa, Origanum vulgare and Mentha sp. was examined. All the essential oils inhibited growth of S. aureus to different extent, by exhibiting moderate to elevated zones of inhibitions. Essential oils of cinnamon (Cortex cinnamomi) and thyme (Thymus vulgaris L) were observed to be the most powerful against MRSA strains used in this study. At lowest concentration of 25µl/ml essential oils comprehensible zone of inhibition was found 9±0.085mm and 8±0.051mm respectively, and at elevated concentrations there was a total decline in growth of MRSA and a very clear zone of inhibition was observed. A synergistic effect of essential oils in amalgamation with amoxicillin a Penicillin group of antibiotic was also examined. Interestingly a strong synergism was observed with oregano (Origanum vulgare) and pennyroyal mint (Mentha pulegium) essential oils, which were not so effective alone driven out to be important synergistic candidate. Our results demonstrated that essential oils of cinnamon and thyme can be used as potential antimicrobial agent against the Methicillin-resistant Staphylococcus aureus infections and Amoxicillin antibacterial activity can be enhanced using active constituents present in oregano and pennyroyal mint essential oils.


Assuntos
Antibacterianos/farmacologia , Cinnamomum zeylanicum , Cicloexanonas/farmacologia , Mentha pulegium , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Óleos Voláteis/farmacologia , Origanum , Penicilinas/farmacologia , Óleos de Plantas/farmacologia , Thymus (Planta) , Antibacterianos/isolamento & purificação , Cinnamomum zeylanicum/química , Cicloexanonas/isolamento & purificação , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Sinergismo Farmacológico , Quimioterapia Combinada , Mentha pulegium/química , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Óleos Voláteis/isolamento & purificação , Origanum/química , Óleos de Plantas/isolamento & purificação , Thymus (Planta)/química
9.
Front Cell Infect Microbiol ; 14: 1301351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655284

RESUMO

Bacterial infections emerge as a significant contributor to mortality and morbidity worldwide. Emerging extended-spectrum ß-lactamase (ESBL) Escherichia coli strains provide a greater risk of bacteremia and mortality, are increasingly resistant to antibiotics, and are a major producer of ESBLs. E. coli bacteremia-linked mastitis is one of the most common bacterial diseases in animals, which can affect the quality of the milk and damage organ functions. There is an elevated menace of treatment failure and recurrence of E. coli bacteremia necessitating the adoption of rigorous alternative treatment approaches. In this study, Se-Boil-CuO multimetallic nanoparticles (MMNPs) were synthesized as an alternate treatment from Talaromyces haitouensis extract, and their efficiency in treating ESBL E. coli was confirmed using standard antimicrobial assays. Scanning electron microscopy, UV-visible spectroscopy, and dynamic light scattering were used to validate and characterize the mycosynthesized Se-BiO-CuO MMNPs. UV-visible spectra of Se-BiO-CuO MMNPs showed absorption peak bands at 570, 376, and 290 nm, respectively. The average diameters of the amorphous-shaped Se-BiO-CuO MMNPs synthesized by T. haitouensis extract were approximately 66-80 nm, respectively. Se-BiO-CuO MMNPs (100 µg/mL) showed a maximal inhibition zone of 18.33 ± 0.57 mm against E. coli. Se-BiO-CuO MMNPs also exhibited a deleterious impact on E. coli killing kinetics, biofilm formation, swimming motility, efflux of cellular components, and membrane integrity. The hemolysis assay also confirms the biocompatibility of Se-BiO-CuO MMNPs at the minimum inhibitory concentration (MIC) range. Our findings suggest that Se-BiO-CuO MMNPs may serve as a potential substitute for ESBL E. coli bacteremia.


Assuntos
Antibacterianos , Cobre , Escherichia coli , Testes de Sensibilidade Microbiana , beta-Lactamases , Escherichia coli/efeitos dos fármacos , beta-Lactamases/metabolismo , Animais , Cobre/química , Cobre/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Nanopartículas/química
10.
Heliyon ; 9(12): e22821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125473

RESUMO

Klebsiella pneumoniae are bacteria associated with respiratory tract infections and are increasingly becoming resistant to antibiotics, including carbapenems. Apramycin is a veterinary antibiotic that may have the potential to be re-purposed for use in human health, for example, for the treatment of respiratory tract infections after coupling to inhalable nanoparticles. In the present study, the antibiotic apramycin was formulated with single chain polymeric nanoparticles and tested in free and formulated forms against a set of 13 Klebsiella pneumoniae isolates (from the Netherlands and Pakistan) expressing different aminoglycoside resistance phenotypes. Minimum Inhibitory Concentration, Time Kill Kinetics and biofilm experiments were performed providing evidence for the potential efficacy of apramycin and apramycin-based nanomedicines for the treatment of human Klebsiella pneumonia infections.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37843797

RESUMO

The mangrove ecosystem is the world's fourth most productive ecosystem in terms of service value and offering rich biological resources. Microorganisms play vital roles in these ecological processes, thus researching the mangroves-microbiota is crucial for a deeper comprehension of mangroves dynamics. Amplicon sequencing that targeted V4 region of 16S rRNA gene was employed to profile the microbial diversities and community compositions of 19 soil samples, which were collected from the rhizosphere of 3 plant species (i.e., Avicennia marina, Ceriops tagal, and Rhizophora mucronata) in the mangrove forests of Lasbela coast, Pakistan. A total of 67 bacterial phyla were observed from three mangroves species, and these taxa were classified into 188 classes, 453 orders, 759 families, and 1327 genera. We found that Proteobacteria (34.9-38.4%) and Desulfobacteria (7.6-10.0%) were the dominant phyla followed by Chloroflexi (6.6-7.3%), Gemmatimonadota (5.4-6.8%), Bacteroidota (4.3-5.5%), Planctomycetota (4.4-4.9%) and Acidobacteriota (2.7-3.4%), Actinobacteriota (2.5-3.3%), and Crenarchaeota (2.5-3.3%). After considering the distribution of taxonomic groups, we prescribe that the distinctions in bacterial community composition and diversity are ascribed to the changes in physicochemical attributes of the soil samples (i.e., electrical conductivity (ECe), pH, total organic matter (OM), total organic carbon (OC), available phosphorus (P), and extractable potassium (CaCO3). The findings of this study indicated a high-level species diversity in Pakistani mangroves. The outcomes may also aid in the development of effective conservation policies for mangrove ecosystems, which have been hotspots for anthropogenic impacts in Pakistan. To our knowledge, this is the first microbial research from a Pakistani mangrove forest.

12.
ScientificWorldJournal ; 2012: 179782, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22545008

RESUMO

The Ocean, which is called the "mother of origin of life," is also the source of structurally unique natural products that are mainly accumulated in living organisms. Cyanobacteria are photosynthetic prokaryotes used as food by humans. They are excellent source of vitamins and proteins vital for life. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS), arthritis, and so forth, while other compounds have been developed as analgesics or to treat inflammation, and so forth. They produce a large variety of bioactive compounds, including substances with anticancer and antiviral activity, UV protectants, specific inhibitors of enzymes, and potent hepatotoxins and neurotoxins. Many cyanobacteria produce compounds with potent biological activities. This paper aims to showcase the structural diversity of marine cyanobacterial secondary metabolites with a comprehensive coverage of alkaloids and other applications of cyanobacteria.


Assuntos
Cianobactérias/metabolismo , Descoberta de Drogas , Biologia Marinha , Antineoplásicos , Antivirais , Inibidores Enzimáticos , Protetores contra Radiação
13.
Microb Drug Resist ; 28(1): 106-119, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34402682

RESUMO

The multidrug resistance (MDR) Escherichia coli having Extended-Spectrum Beta-Lactamase (ESBL) genes and the capacity to create a biofilm acts as a major reduction in the therapeutic effectiveness of antimicrobials. In search of a novel nanocarrier (NC) for targeted delivery of antibiotics, carbon dots (CDs) coated calcium carbonate nanocarriers (CCNC) from organic chicken eggshells conjugated with levofloxacin (Lvx) were synthesized. Our main objectives were to explore the antimicrobial, antibiofilm, and NC potential of CDs coated CaCO3 Nanocarrier conjugated with levofloxacin (CD-CCNC-Lvx) to combat biofilm-producing MDR ESBL E. coli of urinary tract infection origin. The synthesized NC system was physiochemically characterized, validating the synthesis of CCNC and CD-CCNC-Lvx with a particle size of 56 and 14 nm, respectively. Scanning electron microscopy (SEM) showed rod shape morphology. X-ray diffraction results discovered crystalline and dispersed nanoparticles. In vitro release drug kinetics illustrated sustained release of Lvx. NC system exhibited strong antibacterial and antibiofilm potential against E. coli with a noticeable low minimal inhibitory concentration (MIC). MIC of CCNC was found to be 30 ± 0.1 µg/mL and CD-CCNC-Lvx was 20 ± 0.1 µg/mL for MDR ESBL-producing E. coli. The synergistic effect of NC upon conjugation with Lvx showed incredible activity with 30 mm zone of inhibition and 68% biofilm inhibition. Flow cytometry analysis revealed treated E. coli cells showed 58.69% reduction in cell viability. SEM images of treated bacterial cells showed morphological changes, which were also confirmed by our flow cytometry findings leading to cell membrane damage in E. coli. NC system also downregulated the blaCTX-M gene in E. coli. The hemolytic analysis proved biocompatibility with human red blood cells (RBCs). It is concluded that CCNC has the potential to be used as NC for target delivery of antibiotics and may combat toxicity of antibiotics as the inhibition of E. coli was noticed at low MIC concentration.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/tratamento farmacológico , Levofloxacino/uso terapêutico , Pontos Quânticos/química , Infecções Urinárias/tratamento farmacológico , Antibacterianos/administração & dosagem , Apoptose/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Carbono , Liberação Controlada de Fármacos , Escherichia coli/genética , Infecções por Escherichia coli/genética , Humanos , Levofloxacino/administração & dosagem , Testes de Sensibilidade Microbiana , Tecnologia Farmacêutica , beta-Lactamases/genética
14.
Pharmaceutics ; 14(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015345

RESUMO

Background: Multidrug resistant MDR bacterial strains are causing fatal infections, such as mastitis. Thus, there is a need for the development of new target-oriented antimicrobials. Nanomaterials have many advantages over traditional antibiotics, including improved stability, controlled antibiotic release, targeted administration, enhanced bioavailability, and the use of antibiotic-loaded nanomaterials, such as the one herein reported for the first time, appear to be a promising strategy to combat antibiotic-resistant bacteria. The use of rationally designed metallic nanocomposites, rather than the use of single metallic nanoparticles (NPs), should further minimize the bacterial resistance. Aim: Green synthesis of a multimetallic/ternary nanocomposite formed of silver (Ag), titanium dioxide (TiO2), and iron(III) oxide (Fe2O3), conjugated to chitosan (CS), in which the large spectrum fluoroquinolone antibiotic ciprofloxacin (CIP) has been encapsulated. Methods: The metallic nanoparticles (NPs) Ag NPs, TiO2 NPs, and Fe2O3 NPs were synthesized by reduction of Moringa concanensis leaf aqueous extract. The ternary junction was obtained by wet chemical impregnation technique. CIP was encapsulated into the ternary nanocomposite Ag/TiO2/Fe2O3, followed by chitosan (CS) conjugation using the ionic gelation method. The resulting CS-based nanoparticulate drug delivery system (NDDS), i.e., CIP-Ag/TiO2/Fe2O3/CS, was characterized in vitro by gold standard physical techniques such as X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), Fourier-transform infrared (FTIR) spectroscopy. Pharmacological analyses (i.e., LC, EE, ex-vivo drug release behavior) were also assessed. Further, biological studies were carried out both ex vivo (i.e., by disk diffusion method (DDM), fluorescence-activated single cell sorting (FACS), MTT assay) and in vivo (i.e., antibacterial activity in a rabbit model, colony-forming unit (CFU) on blood agar, histopathological analysis using H&E staining). Results: The encapsulation efficiency (EE) and the loading capacity (LC) of the NDDS were as high as 94% ± 1.26 and 57% ± 3.5, respectively. XRD analysis confirmed the crystalline nature of the prepared formulation. FESEM revealed nanorods with an average diameter of 50−70 ± 12 nm. FTIR confirmed the Fe-O-Ti-CS linkages as well as the successful encapsulation of CIP into the NDDS. The zeta potential (ZP) of the NDDS was determined as 85.26 ± 0.12 mV. The antimicrobial potential of the NDDS was elicited by prominent ZIs against MDR E. coli (33 ± 1.40 mm) at the low MIC of 0.112 µg/mL. Morphological alterations (e.g., deformed shape and structural damages) of MDR pathogens were clearly visible overtime by FESEM after treatment with the NDDS at MIC value, which led to the cytolysis ultimately. FACS analysis confirmed late apoptotic of the MDR E. coli (80.85%) after 6 h incubation of the NDDS at MIC (p < 0.05 compared to untreated MDR E. coli used as negative control). The highest drug release (89% ± 0.57) was observed after 8 h using PBS medium at pH 7.4. The viability of bovine mammary gland epithelial cells (BMGE) treated with the NDDS remained superior to 90%, indicating a negligible cytotoxicity (p < 0.05). In the rabbit model, in which infection was caused by injecting MDR E. coli intraperitoneally (IP), no colonies were detected after 72 h of treatment. Importantly, the histopathological analysis showed no changes in the vital rabbit organs in the treated group compared to the untreated group. Conclusions: Taken together, the newly prepared CIP-Ag/TiO2/Fe2O3/CS nanoformulation appears safe, biocompatible, and therapeutically active to fight MDR E. coli strains-causing mastitis.

15.
Comb Chem High Throughput Screen ; 25(5): 808-818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33593253

RESUMO

Natural bioactive compounds with anti-carcinogenic activity are gaining tremendous interest in the field of oncology. Cinnamon, an aromatic condiment commonly used in tropical regions, appeared incredibly promising as an adjuvant for cancer therapy. Indeed, its whole or active parts (e.g., bark, leaf) exhibited significant anti-carcinogenic activity, which is mainly due to two cinnamaldehyde derivatives, namely 2-hydroxycinnaldehyde (HCA) and 2- benzoyloxycinnamaldehyde (BCA). In addition to their anti-cancer activity, HCA and BCA exert immunomodulatory, anti-platelets, and anti-inflammatory activities. The highly reactive α,ßunsaturated carbonyl pharmacophore, called Michael acceptor, contributes to their therapeutic effects. The molecular mechanisms underlying their anti-tumoral and anti-metastatic effects are miscellaneous, strongly suggesting that these compounds are multi-targeting compounds. Nevertheless, unravelling the exact molecular mechanisms of HCA and BCA remains a challenging matter which is necessary for optimal controlled-drug targeting delivery, safety, and efficiency. Eventually, their poor pharmacological properties (e.g., systemic bioavailability and solubility) represent a limitation and depend both on their administration route (e.g., per os, intravenously) and the nature of the formulation (e.g., free, smart nano-). This concise review focused on the potential of HCA and BCA as adjuvants in cancer. We describe their medicinal effects as well as provide an update about their molecular mechanisms reported either in-vitro, ex-vivo, or in animal models.


Assuntos
Neoplasias , Adjuvantes Imunológicos , Animais , Anti-Inflamatórios/farmacologia , Neoplasias/tratamento farmacológico
16.
Chemosphere ; 287(Pt 1): 131956, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34523459

RESUMO

Hydrogel is the most emblematic soft material which possesses significantly tunable and programmable characteristics. Polymer hydrogels possess significant advantages including, biocompatible, simple, reliable and low cost. Therefore, research on the development of hydrogel for biomedical applications has been grown intensely. However, hydrogel development is challenging and required significant effort before the application at an industrial scale. Therefore, the current work focused on evaluating recent trends and issues with hydrogel development for biomedical applications. In addition, the hydrogel's development methodology, physicochemical properties, and biomedical applications are evaluated and benchmarked against the reported literature. Later, biomedical applications of the nano-cellulose-based hydrogel are considered and critically discussed. Based on a detailed review, it has been found that the surface energy, intermolecular interactions, and interactions of hydrogel adhesion forces are major challenges that contribute to the development of hydrogel. In addition, compared to other hydrogels, nanocellulose hydrogels demonstrated higher potential for drug delivery, 3D cell culture, diagnostics, tissue engineering, tissue therapies and gene therapies. Overall, nanocellulose hydrogel has the potential for commercialization for different biomedical applications.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Celulose , Sistemas de Liberação de Medicamentos , Engenharia Tecidual
17.
Pharmaceutics ; 14(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559258

RESUMO

It is important to create new generations of materials that can destroy multidrug-resistant bacterial strains, which are a serious public health concern. This study focused on the biosynthesis of an essential oil entrapped in titanium dioxide (TiO2) calcium alginate-based microspheres. In this research, calcium alginate-based microspheres with entrapped TiO2 nanoparticles and cinnamon essential oil (CI-TiO2-MSs) were synthesized, using an aqueous extract of Nigella sativa seeds for TiO2 nanoparticle preparation, and the ionotropic gelation method for microsphere preparation. The microspheres obtained were spherical, uniformly sized, microporous, and rough surfaced, and they were fully loaded with cinnamon essential oil and TiO2 nanoparticles. The synthesized microspheres were analyzed for antibacterial activity against the clinical multidrug-resistant strain of Staphylococcus aureus. Disc diffusion and flow cytometry analysis revealed strong antibacterial activity by CI-TiO2-MSs. The synthesized CI-TiO2-MSs were characterized by the SEM/EDX, X-ray diffraction, and FTIR techniques. Results showed that the TiO2 nanoparticles were spherical and 99 to 150 nm in size, whereas the CI-TiO2-MSs were spherical and rough surfaced. Apoptosis analysis and SEM micrography revealed that the CI-TiO2-MSs had strong bactericidal activity against S. aureus. The in vitro antibacterial experiments proved that the encapsulated CI-TiO2-MSs had strong potential for use as a prolonged controlled release system against multidrug-resistant clinical S. aureus.

18.
J Pharm Sci ; 110(10): 3471-3483, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34126118

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA)-induced mastitis is one of the biggest animal welfare issues and economic burdens worldwide. As a possible effective treatment, ciprofloxacin (CIP)-loaded cerium oxide (CeO2)/chitosan (CS) nanocomposite was synthesized using an eco-friendly approach, characterized, and evaluated. From 350 mastitis-positive milk samples, 35 mecA-positive MRSA strains were confirmed by antibiotic sensitivity testing and PCR. CeO2 nanoparticles (NPs) were synthetized using the seeds' extract of Amomum subulatum (aka black cardamom/BC) as a reducing and capping agent, which was conjugated with CS by ionic gelation before CIP was nanoencapsulated. The resulting NPs were characterized physically (by using FESEM, TEM, EDS, XRD, FTIR, ZP, and UV-Vis spectrophotometry), biologically and pharmacologically (through in-vitro/ex-vivo antibacterial, cytotoxic, and drug release behavior assays). The CIP-nanocomposite was represented by pure, stable, small, pseudospherical NPs of crystalline nature. FTIR confirmed the surface linkage of CS and CIP in CeO2 NPs. CIP-CeO2/CS nanocarrier exerted enhanced antibacterial activity at lower MIC (8 µg/mL) compared to that of free CIP drug alone. Also, they were hemocompatible and not hepatotoxic. CIP release from the nanocarrier was better sustained in physiological-like conditions. Taken together, the phytogenic CIP-CeO2/CS nanocarrier could be considered as a potent and safe therapeutic solution for MRSA-induced mastitis.


Assuntos
Quitosana , Mastite , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Cério , Ciprofloxacina , Feminino , Humanos
19.
Int J Nanomedicine ; 16: 8203-8219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34949923

RESUMO

PURPOSE: Microbial resistance to antibiotics is one of the most important public health concerns of the 21st century. We isolated, purified, and structurally elucidated antifungal secondary metabolites from red soil microbes and encapsulated them into chitosan (CS)-based nanoemulsion (NE) gel (NEG). METHODS: Three compounds were isolated and purified of which only one compound (Pure 2) showed potent antifungal activity (MFC: 8-132 µg/mL), which was also significantly (P<0.05) more efficient than fluconazole (MFC: 32-132 µg/mL). Pure 2 was structurally elucidated using 1D- and 2D-NMR before its incorporation into NEG. The formulations were prepared by high-speed homogenization technique. Physicochemical and pharmacological characterizations of formulations (ie, droplet size, PDI, zeta potential, drug content, viscosity, SEM, FTIR, spreadability, in vitro drug release, ex vivo permeation, in vitro antifungal and in vivo antifungal activities) were assessed. RESULTS: NMR analyses identified the compound as a derivative of phthalic acid ester (PAE). The optimized formulations displayed a droplet size <100 nm, -ve zeta potential, and PDI <0.45. The drug content was within the official limit of pharmacopeia (ie, 100±10%). Insignificant changes (P>0.05) in the viscosity of the formulations stored were observed. The morphology of the formulations indicated mesh-like structure. The FTIR study indicated that there were no interactions between the drug and other ingredients of the formulations. Optimum spreadability was observed in all formulations. NEG released 75.3±1.12% of Pure 2 after 12 hrs while NE released 85.33±1.88% of the compound. The skin permeation of F2 (71.15±1.28%) was significantly different (P<0.05) from F3 (81.80±1.91%) in rabbits. Complete and apparently safe recovery from the fungal infection was achieved in rabbits treated topically with Pure 2-loaded NEGs. CONCLUSION: Hence, the NEG-loaded PAE isolated from Pseudomonas fluorescens represents a possible alternative for the treatment of fungal infections as compared to available therapies.


Assuntos
Antifúngicos , Quitosana , Administração Cutânea , Animais , Antifúngicos/farmacologia , Emulsões , Tamanho da Partícula , Coelhos
20.
Int J Nanomedicine ; 16: 1157-1174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33623380

RESUMO

INTRODUCTION: Candida albicans is a major opportunistic pathogen that causes a wide range of human infections. Currently available therapeutic agents are limited for treating these fungal infections due to multidrug resistance as well as their nonbiodegradability, poor biocompatibility and toxicity. In order to battle these limitations, we have synthesized a polymeric system as microcarriers to deliver the antifungal drug. The objective of the present study was to immobilize MgO/CuO nanocomposite and nystatin-loaded MgO/CuO nanocomposites in nontoxic, nonimmunogenic, biodegradable and biocompatible sodium alginate microspheres for the first time. MATERIALS AND METHODS: Nanoparticle-loaded sodium alginate microspheres were prepared by ionotropic gelation technique using calcium chloride as a cross-linker. Synthesized microspheres were characterized using standard characterization techniques and were evaluated for biological activity against MDR strain of C. albicans. RESULTS: Characterization of microspheres by Fourier-transform infrared spectroscopy confirmed loading of Nys-MgO/CuO NPs, scanning electron microscopy (SEM) revealed rough spherical beads with a highly porous surface having an average size in the range of 8-10 µm. X-ray diffraction (XRD) analyzed its semicrystalline structure. Entrapment efficiency of Nys-MgO/CuO NPs was 80% and release kinetic study revealed sustained and prolonged release of drug in pH 5.5. Flow cytometry analysis showed yeast cell death caused by Nys-MgO/CuO MS exhibits late apoptotic features. In cytotoxicity assay 5-14 mg of microspheres did not cause hemolysis. Microspheres reduced virulence traits of C. albicans such as germ tube and biofilm formation were compromised at concentration of 5 mg/mL. Antimicrobial assessment results revealed a pronounced inhibitory effect against C. albicans. CONCLUSION: The in vitro experiments have shown promising results based on good stability, Nys-MgO/CuO NP-encapsulated microspheres can be used as a prolonged controlled release system against MDR pathogenic C. albicans.


Assuntos
Alginatos/química , Candida albicans/patogenicidade , Cobre/química , Resistência a Múltiplos Medicamentos , Óxido de Magnésio/química , Microesferas , Nanocompostos/química , Nistatina/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Liberação Controlada de Fármacos , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Fenótipo , Espectroscopia de Infravermelho com Transformada de Fourier , Virulência/efeitos dos fármacos , Fatores de Virulência/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA