Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Anal Chem ; 94(50): 17662-17669, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36472413

RESUMO

Since peroxide-based explosives (PBEs) lack reactive functional groups, they cannot be determined directly by most detection methods and are often detected indirectly by converting them to H2O2. However, H2O2 may originate from many sources, causing false positives in PBE detection. Here, we developed a novel electrochemical sensor for the direct sensitive and selective determination of PBEs such as triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) using electrochemical modification of the glassy carbon (GC) electrode with PBE-memory polycarbazole (PCz) films decorated with gold nanoparticles (AuNPs) by cyclic voltammetry (CV). The prepared electrodes were named TATP-memory-GC/PCz/AuNPs (used for TATP determination) and HMTD-memory-GC/PCz/AuNPs (used for HMTD detection). The calibration lines of TATP and HMTD were found in the concentration range of 0.1-1.0 mg L-1 using the net current intensities of differential pulse voltammetry (DPV) versus analyte concentrations. The limit of detection (LOD) commonly found was 15 µg L-1 for TATP and HMTD. The sensor electrodes could separately determine intact TATP and HMTD in the presence of nitro-aromatic, nitramine, and nitrate ester energetic materials. The proposed electrochemical sensing method was not interfered by electroactive substances such as paracetamol, caffeine, acetylsalicylic acid, aspartame, d-glucose, and detergent (containing perborate and percarbonate) used as camouflage materials for PBEs. This is the first molecularly imprinted polymeric electrode for PBEs accomplishing such low LODs, and the DPV method was statistically validated in contaminated clay soil samples against the GC-MS method for TATP and a spectrophotometric method for HMTD using t- and F-tests.


Assuntos
Substâncias Explosivas , Nanopartículas Metálicas , Ouro , Peróxido de Hidrogênio , Substâncias Explosivas/química , Carbono , Peróxidos , Eletrodos
2.
Mikrochim Acta ; 189(4): 167, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35359164

RESUMO

A novel amperometric method is presented for the determination of total antioxidant capacity in flow injection analysis (FIA) system using copper(II)-neocuproine complex modified on Nafion-functionalized multi-walled carbon nanotube-glassy carbon electrode ([Cu(Ncp)22+]/Nf@f-MWCNT/GCE). Cyclic voltammetric studies showed that the modified electrode exhibits a very well-formed reversible redox couple for Cu(II)-/Cu(I)-complex. In addition, the [Cu(Ncp)22+]/[Cu(Ncp)2+] redox pair shows very good electrocatalytic activity towards the oxidation of polyphenolic compounds (PPhCs) such as trolox, catechin, and quercetin due to the enhancement of the anodic peak current of the redox couple in the presence of these analytes. This electrocatalytic oxidation current at the [Cu(Ncp)22+]/Nf@f-MWCNT/GCE was used for flow injection (FI) amperometric determination of PPhCs. FI amperometric-time curves recorded under optimized conditions (applied potential: + 0.6 V vs. Ag/AgCl/KCl(0.10 M), flow rate: 2 mL/min) showed that the proposed electrode had a wide linear range (LR) with a very low detection limit (LOD) for PPhCs. LR and LOD were 0.5-800 and 0.2 µM for trolox, respectively and 0.50-250 and 0.14 µM, respectively, for both quercetin and catechin. This sensitive method was successfully applied to the amperometric measurement of total antioxidant capacity (TAC) of some herbal teas, giving compatible results with the spectrophotometric CUPRAC method. The proposed method gave higher rank to fast-reacting antioxidants; it was equally precise but had a wider linear range and lower LOD than the spectrophotometric CUPRAC assay (e.g., LOD for ascorbic acid and gallic acid were 0.07 and 0.08 µM, respectively), and similar electroanalytical methods using the CUPRAC reagent.


Assuntos
Antioxidantes , Fenantrolinas , Eletrodos , Oxirredução
3.
Anal Chem ; 93(33): 11451-11460, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34425678

RESUMO

The sensitive and selective determination of peroxide-based explosives (PBEs) in the field/on site is an important analytical challenge. Most methods claiming to detect PBEs are indirect, actually detecting their decomposition product, H2O2. Here, we present an electrochemical sensor for direct detection of organic peroxide explosives, that is, triacetone triperoxide (TATP) and hexamethylenetriperoxide diamine (HMTD), using well-dispersed multiwalled carbon nanotubes/polyethyleneimine (MWCNTs/PEI)-modified glassy carbon (GC) electrode, namely, GC/MWCNTs/PEI electrode. This is the first use of the conductive polyelectrolyte PEI as an electrode modifier for pristine PBE sensing. The potential range, scan rate, solvent selection, and supporting electrolyte concentration were optimized for PBEs. As a distinct advantage over other similar methods, our sensor electrode responded to intact TATP solutions in neutral medium, meaning that TATP did not interact with acids/bases that would transform it into H2O2. Calibration curves were linear in the range of 10-200 mg L-1 for TATP and 25-200 mg L-1 for HMTD. Using differential pulse voltammetry, detection limits of 1.5 mg L-1 TATP and 3.0 mg L-1 HMTD were obtained from direct electrochemical reduction in 80/20% (v/v) H2O-acetone solvent medium. Electroactive camouflage materials such as passenger belongings (e.g., sweetener, detergent, sugar, and paracetamol-caffeine-based analgesic drugs), common ions, and other explosives were shown not to interfere with the proposed method. The nonresponsive behavior of our electrode to H2O2 prevents "false positives" from other peroxide materials of everyday use. This electrochemical sensor could also detect other nitro-explosives at different potentials and was statistically validated against standard GC-MS and spectrophotometric methods.


Assuntos
Substâncias Explosivas , Nanotubos de Carbono , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio , Peróxidos , Polietilenoimina
4.
Mikrochim Acta ; 188(7): 228, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115203

RESUMO

A reusable, low-cost, and convenient ethylenediamine (EDA)-bound magnetite nanoparticles (MNPs)-based colorimetric sensor has been developed for dual function colorimetric determination of nitroaromatic explosives such as TNT and tetryl. Colorimetric detection of analytes may occur through two independent routes: (1) nano-Fe3O4- EDA- NH2 as σ-donor may interact with the σ- and π-acceptor aromatic-poly(NO2) groups to produce a colored charge-transfer (CT) complex; (2) nano-Fe3O4-EDA-NH2 as a Fenton-type nanozyme may generate reactive species that comprise hydroxyl radicals (•OH) with H2O2 to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to a blue-colored diimine (oxTMB-TMB) CT complex, where this color is bleached with TNT/tetryl because of donor-acceptor interactions between the explosive -NO2 groups and the -NH2 group of Fe3O4-EDA nanoparticles of restricted nanozyme activity. Both methods can quantify TNT well below the EPA recommended TNT residential screening level in soil, LOD being in the micromolar range. As EDA was covalently bound to MNPs, the same sensor can be separately reused six times for TNT and eight times for tetryl determination, using method (1). Common metal ions, anions, energetic materials, several camouflage materials, and soil components such as humates did not interfere with the nanosensor performance for TNT and tetryl. The combination of charge-transfer and nanozyme ability of Fe3O4- EDA-NH2 nanoparticles may bring a new approach to dual function colorimetric sensor design. To the best of our knowledge, this is the first dual function colorimetric sensor for TNT and tetryl using the same nanoparticles as sensing elements in two different detection systems involving either formation or bleaching of colored species. The proposed colorimetric sensor can determine nitroaromatic explosives in two different ways: method-1 for TNT and tetryl sensing with EDA-MNPs relies on the donor-acceptor interaction between the electron-deficient nitroaromatics and electron-rich amine groups covalently functionalized on MNPs to produce an absorbance at 512 nm. In method-2, EDA-MNPs having nanozyme activity react with H2O2 to form reactive species that can oxidize TMB to its blue-colored charge-transfer (CT) complex, where TNT and tetryl addition may partially inhibit the nanozyme activity of EDA-MNPs and cause color bleaching (decrement of 650 nm absorbance) by disrupting the CT complex formed from TMB. This is the first dual function colorimetric sensor for nitro explosives uniquely combining charge-transfer and nanozyme ability of EDA-Fe3O4 nanoparticles in the same nano-sensor.

5.
Mikrochim Acta ; 187(10): 586, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32997192

RESUMO

As a first of its kind, we developed a highly sensitive colorimetric nanoprobe for phytic acid (PA) and Fe(III) ion detection based on 4-mercaptophenol (4MP) and thioglycolic acid (TGA)-functionalized gold nanoparticles {AuNPs@(4MP-TGA)}. AuNPs were easily derivatized by 4MP and TGA through -SH binding to gold. Fe(III) ions possibly are bound first to the phenolate groups of 4MP-AuNPs, and further coordinated several nanoparticles via the carboxylate groups of TGA-AuNPs to cause aggregation, resulting in a red-to-purple color change and a bathochromic shift in the SPR absorption band of the nanoprobe. With the addition of PA to the AuNPs@(4MP-TGA)-Fe(III) system, the aggregated particles were released due to strong complex formation between Fe(III) and PA, resulting in a restoration of the color (purple-to-red) and of the SPR band to the original 520 nm wavelength maximum. Thus, the 650-nm absorption is attenuated and the 520-nm band is enhanced upon PA-Fe(III) chelation. This means that the absorption ratio A650/A520 is an indication of Fe(III) whereas the reverse ratio A520/A650 of the PA content of complex samples. The limits of detection (LOD) of the AuNPs@(4MP-TGA) were 1.0 µM for Fe(III) ions and 0.15 µM for PA. Phytic acid extracted from bean grains was determined with the proposed probe, yielding good recoveries. In addition, common metal ions, anions, and several biomolecules did not show an adverse effect on the nanoprobe performance for ferric ions and phytate. The developed method was statistically validated against a LC-MS/MS literature method. Graphical abstract Mercaptophenolate (4MP)- and thioglycolic acid (TGA)-functionalized gold nanoparticles were prepared as nanoprobes to detect Fe(III) ions through nanoparticle aggregation accompanied by red-to-purple color shift. The same nanoprobe determined phytic acid in food through disaggregation of Fe(III)-aggregated nanoparticles by strong Fe(III)-phytate chelation and restoration of solution color from purple to red.

6.
Anal Chem ; 90(12): 7364-7370, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29786423

RESUMO

Since nitroaromatic- and nitramine-type energetic materials, mostly arising from military activities, are persistent pollutants in soil and groundwater, on-site sensing of these hazardous chemicals has gained importance. A novel electrochemical sensor was designed for detecting nitroaromatic- and nitramine-type energetic materials, relying on gold nanoparticles (Aunano), modified glassy carbon (GC) electrode coated with nitro-energetic memory-poly(carbazole-aniline) copolymer (Cz- co-ANI) film (e.g., TNT memory-GC/P(Cz- co-ANI)-Aunano modified electrode). Current was recorded against concentration to build the calibration curves that were found to be linear within the range of 100-1000 µg L-1 for 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT): 50-1000 µg L-1 for 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The corresponding limits of detection were 25 µg L-1 for TNT, 30 µg L-1 for DNT, and 10 µg L-1 for both RDX and HMX, using nitro-energetic memory-GC/P(Cz- co-ANI)-Aunano electrodes. These electrodes were used separately, and specific determinations were made in various mixtures of nitro-energetic materials. The developed method could be efficiently used in electroanalyzing nitroaromatics and nitramines in military explosives (i.e., comp B, octol, and comp A5). The sensor electrodes were specific for the tested nitro-energetic compounds and did not respond to paracetamol-caffeine-based analgesic drug, acetylsalicylic acid (aspirin), sweetener, and sugar that can be used as camouflage materials in passenger belongings. The developed method was statistically validated against the standard LC-MS reference method in contaminated clay soil samples containing TNT and RDX explosives.


Assuntos
Compostos de Anilina/análise , Substâncias Explosivas/análise , Hidrocarbonetos Aromáticos/análise , Nitrobenzenos/análise , Azocinas/análise , Dinitrobenzenos/análise , Técnicas Eletroquímicas , Eletrodos , Impressão Molecular/métodos , Triazinas/análise , Trinitrotolueno/análise
7.
Sensors (Basel) ; 18(1)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29324685

RESUMO

Since an unbalanced excess of reactive oxygen/nitrogen species (ROS/RNS) causes various diseases, determination of antioxidants that can counter oxidative stress is important in food and biological analyses. Optical/electrochemical nanosensors have attracted attention in antioxidant activity (AOA) assessment because of their increased sensitivity and selectivity. Optical sensors offer advantages such as low cost, flexibility, remote control, speed, miniaturization and on-site/in situ analysis. Electrochemical sensors using noble metal nanoparticles on modified electrodes better catalyze bioelectrochemical reactions. We summarize the design principles of colorimetric sensors and nanoprobes for food antioxidants (including electron-transfer based and ROS/RNS scavenging assays) and important milestones contributed by our laboratory. We present novel sensors and nanoprobes together with their mechanisms and analytical performances. Our colorimetric sensors for AOA measurement made use of cupric-neocuproine and ferric-phenanthroline complexes immobilized on a Nafion membrane. We recently designed an optical oxidant/antioxidant sensor using N,N-dimethyl-p-phenylene diamine (DMPD) as probe, from which ROS produced colored DMPD-quinone cationic radicals electrostatically retained on a Nafion membrane. The attenuation of initial color by antioxidants enabled indirect AOA estimation. The surface plasmon resonance absorption of silver nanoparticles as a result of enlargement of citrate-reduced seed particles by antioxidant addition enabled a linear response of AOA. We determined biothiols with Ellman reagent-derivatized gold nanoparticles.


Assuntos
Microscopia Eletroquímica de Varredura , Antioxidantes , Análise de Alimentos , Ouro , Nanopartículas Metálicas , Nanoestruturas , Oxirredução , Prata , Espectrofotometria
9.
Int J Mol Sci ; 17(8)2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27490543

RESUMO

Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure. In the first step, p-ATP was electropolymerized on the electrode surface to obtain a polyaminothiophenol (PATP) coating. In the second step, Au/p-ATP-Aunano working electrode was prepared by coating the surface with the use of HAuCl4 solution and cyclic voltammetry. Determination of aqueous nitrite samples was performed with the proposed electrode (Au/p-ATP-Aunano) using square wave voltammetry (SWV) in pH 4 buffer medium. Characteristic peak potential of nitrite samples was 0.76 V, and linear calibration curves of current intensity versus concentration was linear in the range of 0.5-50 mg·L(-1) nitrite with a limit of detection (LOD) of 0.12 mg·L(-1). Alternatively, nitrite in sausage samples could be colorimetrically determined with high sensitivity by means of p-ATP‒modified gold nanoparticles (AuNPs) and naphthylethylene diamine as coupling agents for azo-dye formation due to enhanced charge-transfer interactions with the AuNPs surface. The slopes of the calibration lines in pure NO2(-) solution and in sausage sample solution, to which different concentrations of NO2(-) standards were added, were not significantly different from each other, confirming the robustness and interference tolerance of the method. The proposed voltammetric sensing method was validated against the colorimetric nanosensing method in sausage samples.


Assuntos
Compostos de Anilina/química , Eletroquímica/métodos , Conservantes de Alimentos/análise , Ouro/química , Nanopartículas Metálicas/química , Nitritos/análise , Compostos de Sulfidrila/química , Técnicas Biossensoriais , Colorimetria , Espectroscopia Dielétrica , Eletrodos , Microscopia Eletrônica de Varredura , Polimerização , Polímeros/química
10.
Anal Chem ; 87(19): 9589-94, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26356315

RESUMO

The explosive triacetone triperoxide (TATP) can be easily manufactured from readily accessible reagents and is extremely difficult to detect, owing to the lack of UV absorbance, fluorescence, or facile ionization. The developed method is based on the acidic hydrolysis of TATP into H2O2, pH adjustment to 3.6, and the addition of magnetite nanoparticles (Fe3O4 MNPs) to the medium to produce hydroxyl radicals from H2O2, owing to the peroxidase-like activity of MNPs. The formed radicals converted the N,N-dimethyl-p-phenylenediamine (DMPD) probe to the colored DMPD(+) radical cation, the optical absorbance of which was measured at a wavelength of 554 nm. The molar absorptivity (ε) of the method for TATP was 21.06 × 10(3) L mol(-1) cm(-1). The colored DMPD(+) product in solution could be completely retained on a cation-exchanger Nafion membrane, constituting a colorimetric sensor for TATP and increasing the analytical sensitivity. The proposed method did not respond to a number of hand luggage items like detergent, sweetener, sugar, acetylsalicylic acid (aspirin), and paracetamol-caffeine-based analgesic drugs. On the other hand, TATP could be almost quantitatively recovered from a household detergent and sweetener that can be used as camouflage for the analyte. Neither common soil and groundwater ions (e.g., Ca(2+), Mg(2+), K(+), Cl(-), SO4(2-), and NO3(-)) at 100-fold ratios nor nitro-explosives of trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and pentaerythritol tetranitrate (PETN) at 10-fold amounts interfered with the proposed assay. The method was statistically validated against the standard GC/MS reference method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA