Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Small ; 20(26): e2307793, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243890

RESUMO

When the ancestors of men moved from aquatic habitats to the drylands, their evolutionary strategy to restrict water loss is to seal the skin surface with lipids. It is unknown how these rigid ceramide-dominated lipids with densely packed chains squeeze through narrow extracellular spaces and how they assemble into their complex multilamellar architecture. Here it is shown that the human corneocyte lipid envelope, a monolayer of ultralong covalently bound lipids on the cell surface protein, templates the functional barrier assembly by partly fluidizing and rearranging the free extracellular lipids in its vicinity during the sculpting of a functional skin lipid barrier. The lipid envelope also maintains the fluidity of the extracellular lipids during mechanical stress. This local lipid fluidization does not compromise the permeability barrier. The results provide new testable hypotheses about epidermal homeostasis and the pathophysiology underlying diseases with impaired lipid binding to corneocytes, such as congenital ichthyosis. In a broader sense, this lipoprotein-mediated fluidization of rigid (sphingo)lipid patches may also be relevant to lipid rafts and cellular signaling events and inspire new functional materials.


Assuntos
Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Lipídeos/química
2.
J Lipid Res ; 64(5): 100356, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948272

RESUMO

Omega-O-acyl ceramides such as 32-linoleoyloxydotriacontanoyl sphingosine (Cer[EOS]) are essential components of the lipid skin barrier, which protects our body from excessive water loss and the penetration of unwanted substances. These ceramides drive the lipid assembly to epidermal-specific long periodicity phase (LPP), structurally much different than conventional lipid bilayers. Here, we synthesized Cer[EOS] with selectively deuterated segments of the ultralong N-acyl chain or deuterated or 13C-labeled linoleic acid and studied their molecular behavior in a skin lipid model. Solid-state 2H NMR data revealed surprising molecular dynamics for the ultralong N-acyl chain of Cer[EOS] with increased isotropic motion toward the isotropic ester-bound linoleate. The sphingosine moiety of Cer[EOS] is also highly mobile at skin temperature, in stark contrast to the other LPP components, N-lignoceroyl sphingosine acyl, lignoceric acid, and cholesterol, which are predominantly rigid. The dynamics of the linoleic chain is quantitatively described by distributions of correlation times and using dynamic detector analysis. These NMR results along with neutron diffraction data suggest an LPP structure with alternating fluid (sphingosine chain-rich), rigid (acyl chain-rich), isotropic (linoleate-rich), rigid (acyl-chain rich), and fluid layers (sphingosine chain-rich). Such an arrangement of the skin barrier lipids with rigid layers separated with two different dynamic "fillings" i) agrees well with ultrastructural data, ii) satisfies the need for simultaneous rigidity (to ensure low permeability) and fluidity (to ensure elasticity, accommodate enzymes, or antimicrobial peptides), and iii) offers a straightforward way to remodel the lamellar body lipids into the final lipid barrier.


Assuntos
Ácido Linoleico , Simulação de Dinâmica Molecular , Esfingosina/análise , Pele/química , Epiderme , Ceramidas/química
3.
Mol Pharm ; 20(12): 6237-6245, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37950377

RESUMO

Oleic acid and oleyl alcohol are commonly used permeation and penetration enhancers to facilitate topical drug delivery. Here, we aimed to better understand the mechanism of their enhancing effects in terms of their interactions with the human skin barrier using diclofenac diethylamine (DIC-DEA), a nonsteroidal anti-inflammatory drug for topical pain management. Oleic acid promoted DIC-DEA permeation through ex vivo human skin more rapidly than oleyl alcohol (both applied at 0.75%) due to fluidization of stratum corneum lipids as revealed by infrared spectroscopy. After 12 h, the effect of these enhancers on DIC-DEA permeation leveled off, fluidization was no longer evident, and skin permeabilization was mainly due to the formation of fluid enhancer-rich domains. Contrary to oleyl alcohol, oleic acid adversely affected two indicators of the skin barrier integrity, transepidermal water loss and skin electrical impedance. The content of oleyl alcohol in the stratum corneum was lower than that of oleic acid (even 12 h after the enhancers were removed from the skin surface), but it caused higher DIC-DEA retention in both epidermis and dermis compared to oleic acid. The effects of oleyl alcohol and oleic acid on DIC-DEA permeation and retention in the skin were similar after a single and repeated application (4 doses every 12 h). Thus, oleyl alcohol offers several advantages over oleic acid for topical drug delivery.


Assuntos
Ácido Oleico , Absorção Cutânea , Humanos , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Pele/metabolismo , Álcoois Graxos/metabolismo , Álcoois Graxos/farmacologia , Administração Cutânea
4.
J Lipid Res ; 63(6): 100226, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568253

RESUMO

Epidermal omega-O-acylceramides (ω-O-acylCers) are essential components of a competent skin barrier. These unusual sphingolipids with ultralong N-acyl chains contain linoleic acid esterified to the terminal hydroxyl of the N-acyl, the formation of which requires the transacylase activity of patatin-like phospholipase domain containing 1 (PNPLA1). In ichthyosis with dysfunctional PNPLA1, ω-O-acylCer levels are significantly decreased, and ω-hydroxylated Cers (ω-OHCers) accumulate. Here, we explore the role of the linoleate moiety in ω-O-acylCers in the assembly of the skin lipid barrier. Ultrastructural studies of skin samples from neonatal Pnpla1+/+ and Pnpla1-/- mice showed that the linoleate moiety in ω-O-acylCers is essential for lamellar pairing in lamellar bodies, as well as for stratum corneum lipid assembly into the long periodicity lamellar phase. To further study the molecular details of ω-O-acylCer deficiency on skin barrier lipid assembly, we built in vitro lipid models composed of major stratum corneum lipid subclasses containing either ω-O-acylCer (healthy skin model), ω-OHCer (Pnpla1-/- model), or combination of the two. X-ray diffraction, infrared spectroscopy, and permeability studies indicated that ω-OHCers could not substitute for ω-O-acylCers, although in favorable conditions, they form a medium lamellar phase with a 10.8 nm-repeat distance and permeability barrier properties similar to long periodicity lamellar phase. In the absence of ω-O-acylCers, skin lipids were prone to separation into two phases with diminished barrier properties. The models combining ω-OHCers with ω-O-acylCers indicated that accumulation of ω-OHCers does not prevent ω-O-acylCer-driven lamellar stacking. These data suggest that ω-O-acylCer supplementation may be a viable therapeutic option in patients with PNPLA1 deficiency.


Assuntos
Ceramidas , Pele , Aciltransferases , Animais , Ceramidas/química , Epiderme , Ictiose , Ácido Linoleico , Lipase , Camundongos
5.
J Lipid Res ; 63(3): 100177, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35143845

RESUMO

Desulfation of cholesterol sulfate (CholS) to cholesterol (Chol) is an important event in epidermal homeostasis and necessary for stratum corneum (SC) barrier function. The CholS/Chol ratio decreases during SC maturation but remains high in pathological conditions, such as X-linked ichthyosis, characterized by dry and scaly skin. The aim of this study was to characterize the influence of the CholS/Chol molar ratio on the structure, dynamics, and permeability of SC lipid model mixtures. We synthesized deuterated CholS and investigated lipid models with specifically deuterated components using 2H solid-state NMR spectroscopy at temperatures from 25°C to 80°C. Although the rigid acyl chains in ceramides and fatty acids remained essentially rigid upon variation of the CholS/Chol ratio, both sterols were increasingly fluidized in lipid models containing higher CholS concentrations. We also show the X-ray repeat distance of the lipid lamellar phase (105 Å) and the orthorhombic chain packing of the ceramide's acyl chains and long free fatty acids did not change upon the variation of the CholS content. However, the Chol phase separation visible in models with high Chol concentration disappeared at the 50:50 CholS/Chol ratio. This increased fluidity resulted in higher permeabilities to model markers of these SC models. These results reveal that a high CholS/Chol ratio fluidizes the sterol fraction and increases the permeability of the SC lipid phase while maintaining the lamellar lipid arrangement with an asymmetric sterol distribution.


Assuntos
Ésteres do Colesterol , Esteróis , Ceramidas/química , Colesterol/química , Epiderme/química , Permeabilidade , Pele/química
6.
Skin Pharmacol Physiol ; 35(3): 156-165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100602

RESUMO

INTRODUCTION: Constantly increasing air pollution (AP) poses a concern affecting not only our health but also our skin. A typical manifestation of the skin damage induced by AP is its premature aging, irritation, skin barrier impairment, pigmentation disorders, and development or exacerbation of various skin diseases. For these reasons, it is crucial to protect the skin from the negative effects of AP. In this study, we evaluated the ability of some compounds commonly used in dermatological or cosmetic preparations with various biological activities to reduce AP-induced skin damage. METHODS: We established a new experimental model using porcine skin explants exposed to cigarette smoke (CS) in which we determined the level of reactive oxygen species (ROS) in the stratum corneum, skin barrier lipids peroxidation, and gene expression of the pro-inflammatory cytokine interleukin 6 in the epidermis. Then, we tested several polysaccharides and their derivatives such as sodium hyaluronate (SH) of different molecular weight (MW, 1.6 MDa, 300 kDa, 15 kDa, 5 kDa), yeast glucomannan, schizophyllan, and carboxymethyl ß-glucan, then vitamin C derivative sodium ascorbyl phosphate, niacinamide, and D-panthenol for their ability to prevent CS-induced skin damage. For the evaluation and comparison of their mechanism of action, film-forming effect was determined by TEWL and gloss measurements and the antioxidant properties were assessed by DPPH assay. RESULTS: In the skin samples exposed to CS, we observed significant negative changes such as the presence of large amount of ROS in the stratum corneum, high level of skin barrier lipids peroxidation and upregulated IL6 gene expression. Pretreatment of the skin samples with all the tested substances significantly prevented CS-induced skin damage. The most effective were high MW SH probably due to its best film-forming effect and sodium ascorbyl phosphate with the best antioxidant properties. CONCLUSION: AP leads to a significant skin damage which can be effectively prevented using some conventional cosmetic and dermatological ingredients with various mechanisms of action.


Assuntos
Poluição do Ar , Cosméticos , Antioxidantes/farmacologia , Cosméticos/farmacologia , Lipídeos , Estresse Oxidativo , Espécies Reativas de Oxigênio
7.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299088

RESUMO

Ceramides (Cers) with α-hydroxylated acyl chains comprise about a third of all extractable skin Cers and are required for permeability barrier homeostasis. We have probed here the effects of Cer hydroxylation on their behavior in lipid models comprising the major SC lipids, Cer/free fatty acids (C 16-C 24)/cholesterol, and a minor component, cholesteryl sulfate. Namely, Cers with (R)-α-hydroxy lignoceroyl chains attached to sphingosine (Cer AS), dihydrosphingosine (Cer AdS), and phytosphingosine (Cer AP) were compared to their unnatural (S)-diastereomers and to Cers with non-hydroxylated lignoceroyl chains attached to sphingosine (Cer NS), dihydrosphingosine (Cer NdS), and phytosphingosine (Cer NP). By comparing several biophysical parameters (lamellar organization by X-ray diffraction, chain order, lateral packing, phase transitions, and lipid mixing by infrared spectroscopy using deuterated lipids) and the permeabilities of these models (water loss and two permeability markers), we conclude that there is no general or common consequence of Cer α-hydroxylation. Instead, we found a rich mix of effects, highly dependent on the sphingoid base chain, configuration at the α-carbon, and permeability marker used. We found that the model membranes with unnatural Cer (S)-AS have fewer orthorhombically packed lipid chains than those based on the (R)-diastereomer. In addition, physiological (R)-configuration decreases the permeability of membranes, with Cer (R)-AdS to theophylline, and increases the lipid chain order in model systems with natural Cer (R)-AP. Thus, each Cer subclass makes a distinct contribution to the structural organization and function of the skin lipid barrier.


Assuntos
Ceramidas/química , Transição de Fase , Pele/química , Pele/metabolismo , Esfingosina/análogos & derivados , Esfingosina/química , Acilação , Humanos , Hidroxilação , Permeabilidade
8.
J Lipid Res ; 61(2): 219-228, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31857390

RESUMO

Ceramides (Cers) with ultralong (∼32-carbon) chains and ω-esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ∼10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content-namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.


Assuntos
Ceramidas/análise , Lipídeos de Membrana/química , Dermatopatias/metabolismo , Pele/química , Ceramidas/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Estrutura Molecular , Pele/metabolismo
9.
Molecules ; 25(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316273

RESUMO

Gentiana lutea is a bitter herb that is traditionally used to improve gastric disorders. Recently, we have shown that Gentiana lutea extract (GE) also modulates the lipid metabolism of human keratinocytes in vitro and in vivo. In the present study, we investigated the role of GE on ceramide synthesis in human primary keratinocytes (HPKs) and psoriasis-like keratinocytes. We could demonstrate that GE increased the concentrations of glucosylceramides and the ceramide AS/AdS subclass without affecting the overall ceramide content in HPKs. The expression of ceramide synthase 3 (CERS3) and elongases (ELOVL1 and 4) was reduced in psoriasis lesions compared to healthy skin. Psoriasis-like HPKs, generated by stimulating HPKs with cytokines that are involved in the pathogenesis of psoriasis (IL-17, TNF-α, IL-22 and IFN-γ) showed increased levels of IL-6, IL-8 and increased expression of DEFB4A, as well as decreased expression of ELOVL4. The treatment with GE partly rescued the reduced expression of ELOVL4 in psoriasis-like HPKs and augmented CERS3 expression. This study has shown that GE modulates ceramide synthesis in keratinocytes. Therefore, GE might be a novel topical treatment for skin diseases with an altered lipid composition such as psoriasis.


Assuntos
Ceramidas/metabolismo , Gentiana/química , Queratinócitos/citologia , Extratos Vegetais/farmacologia , Psoríase/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Extratos Vegetais/química , Cultura Primária de Células , Psoríase/genética , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo
10.
Angew Chem Int Ed Engl ; 59(40): 17383-17387, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32515145

RESUMO

The lipid phase of the uppermost human skin layer is thought to comprise highly rigid lipids in an orthorhombic phase state to protect the body against the environment. By synthesizing sphingosine-d28 deuterated N-lignoceroyl-d-erythro-sphingosine (ceramide [NS]), we compare the structure and dynamics of both chains of that lipid in biologically relevant mixtures using X-ray diffraction, 2 H NMR analysis, and infrared spectroscopy. Our results reveal a substantial fraction of sphingosine chains in a fluid and dynamic phase state at physiological temperature. These findings prompt revision of our current understanding of the skin lipid barrier, where an extended ceramide [NS] conformation is preferred and a possible domain structure is proposed. Mobile lipid chains may be crucial for skin elasticity and the translocation of physiologically important molecules.


Assuntos
Ceramidas/química , Pele/química , Esfingosina/química , Colesterol/química , Deutério/química , Humanos , Espectroscopia de Ressonância Magnética , Nanoestruturas/química , Pele/metabolismo , Espectrofotometria Infravermelho , Temperatura
11.
J Lipid Res ; 60(5): 963-971, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30885924

RESUMO

Membrane models of the stratum corneum (SC) lipid barrier, either healthy or affected by recessive X-linked ichthyosis, constructed from ceramide [Cer; nonhydroxyacyl sphingosine N-tetracosanoyl-d-erythro-sphingosine (CerNS24) alone or with omega-O-acylceramide N-(32-linoleyloxy)dotriacontanoyl-d-erythro-sphingosine (CerEOS)], FFAs(C16-24), cholesterol (Chol), and sodium cholesteryl sulfate (CholS) were investigated. X-ray diffraction (XRD) revealed a previously unreported polymorphism of the membranes. In the absence of CerEOS, the membranes formed a short lamellar phase (SLP; the repeat distance d = 5.3 nm), a medium lamellar phase (MLP; d = 10.6 nm), or very long lamellar phases (VLLP; d = 15.9 and 21.2 nm). An increased CholS-to-Chol ratio modulated the membrane polymorphism, although the CholS phase separated at ≥ 7 weight% (of total lipids). The presence of CerEOS led to the stable long lamellar phase (LLP) with d = 12.2 nm and prevented VLLP formation. Our XRD results agree well with recently published cryo-electron microscopy data for vitreous skin sections, while also revealing new structures. Thus, lamellar phases with long repeat distances (MLP and VLLP) may be formed in the absence of omega-O-acylceramide, whereas these ultralong Cer species likely stabilize the final SC lipid architecture of LLP by riveting the adjacent lipid layers.


Assuntos
Ictiose Ligada ao Cromossomo X/metabolismo , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Pele/química , Microscopia Crioeletrônica , Humanos , Ictiose Ligada ao Cromossomo X/genética , Ictiose Ligada ao Cromossomo X/patologia , Lipídeos de Membrana/química , Pele/metabolismo , Pele/patologia
12.
Am J Pathol ; 188(6): 1419-1429, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29548991

RESUMO

Mutations in several lipid synthetic enzymes that block fatty acid and ceramide production produce autosomal recessive congenital ichthyoses (ARCIs) and associated abnormalities in permeability barrier homeostasis. However, the basis for the phenotype in patients with NIPAL4 (ichthyin) mutations (among the most prevalent ARCIs) remains unknown. Barrier function was abnormal in an index patient and in canines with homozygous NIPAL4 mutations, attributable to extensive membrane stripping, likely from detergent effects of nonesterified free fatty acid. Cytotoxicity compromised not only lamellar body secretion but also formation of the corneocyte lipid envelope (CLE) and attenuation of the cornified envelope (CE), consistent with a previously unrecognized, scaffold function of the CLE. Together, these abnormalities result in failure to form normal lamellar bilayers, accounting for the permeability barrier abnormality and clinical phenotype in NIPA-like domain-containing 4 (NIPAL4) deficiency. Thus, NIPAL4 deficiency represents another lipid synthetic ARCI that converges on the CLE (and CE), compromising their putative scaffold function. However, the clinical phenotype only partially improved after normalization of CLE and CE structure with topical ω-O-acylceramide because of ongoing accumulation of toxic metabolites, further evidence that proximal, cytotoxic metabolites contribute to disease pathogenesis.


Assuntos
Modelos Animais de Doenças , Epiderme/patologia , Ictiose/patologia , Lipídeos/análise , Mutação , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Adulto , Animais , Cães , Epiderme/metabolismo , Feminino , Homozigoto , Humanos , Ictiose/genética , Ictiose/metabolismo , Masculino , Linhagem , Fenótipo
13.
Mol Pharm ; 16(2): 886-897, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30629452

RESUMO

Skin penetration/permeation enhancers facilitate drug delivery through the skin barrier. However, the specific mechanisms that govern the enhancer interactions with the skin, drug, and donor solvent are not fully understood. We designed and synthesized fluorescent-labeled enhancers by attaching 7-nitrobenzo[c][1,2,5]oxadiazol-4-yl (NBD) groups to 6-aminohexanoic acid esters. These NBD esters (applied at a 1% concentration) enhanced the permeation of the model drugs theophylline and hydrocortisone through human skin in vitro up to 6.6- and 3.9-times, respectively. The enhancement effects were strongly affected by the ester chain length (C8-C12) and the polarity of the donor solvent. Using high-performance liquid chromatography with fluorescence detection, no NBD esters were detected in the acceptor buffer, but their hydrolysis product, NBD acid, was detected, whereas both acid and esters were found in the skin. The enhancer hydrolysis occurred in the lower stratum corneum and epidermis; more hydrophilic NBD acid, which is an inactive enhancer, penetrated deeper. This illustrates the principle of biodegradable enhancers. The enhancer concentrations in the skin depended not only on the enhancer chain length and the donor solvent, but also on the drug used. Thus, the drug, when coapplied with the enhancer, modulates the enhancer penetration into the skin and, consequently, its effect. Finally, active (NBD-C8 ester) and inactive (NBD acid) enhancers were visualized in human skin by confocal laser scanning microscopy. Both compounds were found mostly in the stratum corneum intercellular spaces, suggesting that although both are located within the skin barrier lipids, only the active ester is able to effectively interact with the lipids, which was proved by infrared spectroscopy of enhancer-treated stratum corneum. This proof-of-concept study illustrates the use of fluorescent enhancers to obtain insight into the skin penetration/permeation process; interactions among the enhancer, drug, solvent, and skin; and enhancer metabolism.


Assuntos
Pele/metabolismo , Solventes/química , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Pessoa de Meia-Idade , Absorção Cutânea/fisiologia
14.
Biochim Biophys Acta Biomembr ; 1860(5): 1162-1170, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29408487

RESUMO

In this work, we studied model stratum corneum lipid mixtures composed of the hydroxylated skin ceramides N-lignoceroyl 6-hydroxysphingosine (Cer[NH]) and α-hydroxylignoceroyl phytosphingosine (Cer[AP]). Two model skin lipid mixtures of the composition Cer[NH] or Cer[AP], N-lignoceroyl sphingosine (Cer[NS]), lignoceric acid (C24:0) and cholesterol in a 0.5:0.5:1:1 molar ratio were compared. Model membranes were investigated by differential scanning calorimetry and 2H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Each component of the model mixture was specifically deuterated for selective detection by 2H NMR. Thus, the exact phase composition of the mixture at varying temperatures could be quantified. Moreover, using X-ray powder diffraction we investigated the lamellar phase formation. From the solid-state NMR and DSC studies, we found that both hydroxylated Cer[NH] and Cer[AP] exhibit a similar phase behavior. At physiological skin temperature of 32 °C, the lipids form a crystalline (orthorhombic) phase. With increasing temperature, most of the lipids become fluid and form a liquid-crystalline phase, which converts to the isotropic phase at higher temperatures (65-80 °C). Interestingly, lignoceric acid in the Cer[NH]-containing mixture has a tendency to form two types of fluid phases at 65 °C. This tendency was also observed in Cer[AP]-containing membranes at 80 °C. While Cer[AP]-containing lipid models formed a short periodicity phase featuring a repeat spacing of d = 5.4 nm, in the Cer[NH]-based model skin lipid membranes, the formation of unusual long periodicity phase with a repeat spacing of d = 10.7 nm was observed.


Assuntos
Ceramidas/química , Ceramidas/metabolismo , Deutério/química , Bicamadas Lipídicas/metabolismo , Difração de Pó/métodos , Permeabilidade da Membrana Celular , Colesterol/química , Humanos , Hidroxilação/fisiologia , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Biológicos , Pele/química , Pele/metabolismo , Temperatura Cutânea/fisiologia , Temperatura , Raios X
15.
Cancer Immunol Immunother ; 67(1): 89-100, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28948333

RESUMO

OBJECTIVE: Immunotherapy of cancer has the potential to be effective mostly in patients with a low tumour burden. Rising PSA (prostate-specific antigen) levels in patients with prostate cancer represents such a situation. We performed the present clinical study with dendritic cell (DC)-based immunotherapy in this patient population. MATERIALS AND METHODS: The single-arm phase I/II trial registered as EudraCT 2009-017259-91 involved 27 patients with rising PSA levels. The study medication consisted of autologous DCs pulsed with the killed LNCaP cell line (DCVAC/PCa). Twelve patients with a favourable PSA response continued with the second cycle of immunotherapy. The primary and secondary objectives of the study were to assess the safety and determine the PSA doubling time (PSADT), respectively. RESULTS: No significant side effects were recorded. The median PSADT in all treated patients increased from 5.67 months prior to immunotherapy to 18.85 months after 12 doses (p < 0.0018). Twelve patients who continued immunotherapy with the second cycle had a median PSADT of 58 months that remained stable after the second cycle. In the peripheral blood, specific PSA-reacting T lymphocytes were increased significantly already after the fourth dose, and a stable frequency was detected throughout the remainder of DCVAC/PCa treatment. Long-term immunotherapy of prostate cancer patients experiencing early signs of PSA recurrence using DCVAC/PCa was safe, induced an immune response and led to the significant prolongation of PSADT. Long-term follow-up may show whether the changes in PSADT might improve the clinical outcome in patients with biochemical recurrence of the prostate cancer.


Assuntos
Células Dendríticas/imunologia , Imunoterapia/métodos , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/terapia , Linfócitos T/imunologia , Idoso , Células Dendríticas/transplante , Regulação Neoplásica da Expressão Gênica , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/imunologia , Prostatectomia , Neoplasias da Próstata/imunologia , Radioterapia , Resultado do Tratamento , Carga Tumoral
16.
Chem Res Toxicol ; 31(6): 435-446, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29766723

RESUMO

Aroylhydrazone iron chelators such as salicylaldehyde isonicotinoyl hydrazone (SIH) protect various cells against oxidative injury and display antineoplastic activities. Previous studies have shown that a nitro-substituted hydrazone, namely, NHAPI, displayed markedly improved plasma stability, selective antitumor activity, and moderate antioxidant properties. In this study, we prepared four series of novel NHAPI derivatives and explored their iron chelation activities, anti- or pro-oxidant effects, protection against model oxidative injury in the H9c2 cell line derived from rat embryonic cardiac myoblasts, cytotoxicities to the corresponding noncancerous H9c2 cells, and antiproliferative activities against the MCF-7 human breast adenocarcinoma and HL-60 human promyelocytic leukemia cell lines. Nitro substitution had both negative and positive effects on the examined properties, and we identified new structure-activity relationships. Naphthyl and biphenyl derivatives showed selective antiproliferative action, particularly in the breast adenocarcinoma MCF-7 cell line, where they exceeded the selectivity of the parent compound NHAPI. Of particular interest is a compound prepared from 2-hydroxy-5-methyl-3-nitroacetophenone and biphenyl-4-carbohydrazide, which protected cardiomyoblasts against oxidative injury at 1.8 ± 1.2 µM with 24-fold higher selectivity than SIH. These compounds will serve as leads for further structural optimization and mechanistic studies.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Hidrazonas/farmacologia , Quelantes de Ferro/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/toxicidade , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/toxicidade , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Hidrazonas/toxicidade , Quelantes de Ferro/síntese química , Quelantes de Ferro/química , Quelantes de Ferro/toxicidade , Radioisótopos de Ferro , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
17.
Langmuir ; 34(1): 521-529, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29228775

RESUMO

Ceramides (Cer) are key components of the skin permeability barrier. Sphingosine-based CerNS and dihydrosphingosine-based CerNdS (dihydroCer) have two chiral centers; however, the importance of the correct stereochemistry in the skin barrier Cer is unknown. We investigated the role of the configuration at C-3 of CerNS and CerNdS in the organization and permeability of model skin lipid membranes. Unnatural l-threo-CerNS and l-threo-CerNdS with 24-C acyl chains were synthesized and, along with their natural d-erythro-isomers, incorporated into membranes composed of major stratum corneum lipids (Cer, free fatty acids, cholesterol, and cholesteryl sulfate). The membrane microstructure was investigated by X-ray powder diffraction and infrared spectroscopy, including deuterated free fatty acids. Inversion of the C-3 configuration in CerNS and CerNdS increased phase transition temperatures, had no significant effects on lamellar phases, but also decreased the proportion of orthorhombic packing and decreased lipid mixing in the model membranes. These changes in membrane organization resulted in membrane permeabilities that ranged from unchanged to 5-fold higher (depending on the permeability markers, namely, water loss, electrical impedance, flux of theophylline, and flux of indomethacin) compared to membranes with natural CerNS/NdS isomers. Thus, the physiological d-erythro stereochemistry of skin Cer and dihydroCer appears to be essential for their correct barrier function.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Ceramidas/química , Ceramidas/metabolismo , Pele/citologia , Permeabilidade , Temperatura de Transição
18.
Anal Bioanal Chem ; 410(25): 6585-6594, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30054694

RESUMO

Negative-ion hydrophilic liquid chromatography-electrospray ionization mass spectrometry (HILIC/ESI-MS) method has been optimized for the quantitative analysis of ganglioside (GM3) and other polar lipid classes, such as sulfohexosylceramides (SulfoHexCer), sulfodihexosylceramides (SulfoHex2Cer), phosphatidylglycerols (PG), phosphatidylinositols (PI), lysophosphatidylinositols (LPI), and phosphatidylserines (PS). The method is fully validated for the quantitation of the studied lipids in kidney normal and tumor tissues of renal cell carcinoma (RCC) patients based on the lipid class separation and the coelution of lipid class internal standard with the species from the same lipid class. The raw data are semi-automatically processed using our software LipidQuant and statistically evaluated using multivariate data analysis (MDA) methods, which allows the complete differentiation of both groups with 100% specificity and sensitivity. In total, 21 GM3, 28 SulfoHexCer, 26 SulfoHex2Cer, 10 PG, 19 PI, 4 LPI, and 7 PS are determined in the aqueous phase of lipidomic extracts from kidney tumor tissue samples and surrounding normal tissue samples of 20 RCC patients. S-plots allow the identification of most upregulated (PI 40:5, PI 40:4, GM3 34:1, and GM3 42:2) and most downregulated (PI 32:0, PI 34:0, PS 36:4, and LPI 16:0) lipids, which are primarily responsible for the differentiation of tumor and normal groups. Another confirmation of most dysregulated lipids is performed by the calculation of fold changes together with T and p values to highlight their statistical significance. The comparison of HILIC/ESI-MS data and matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) data confirms that lipid dysregulation patterns are similar for both methods. Graphical abstract ᅟ.


Assuntos
Carcinoma de Células Renais/química , Gangliosídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Padrões de Referência
19.
Int J Mol Sci ; 19(11)2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413126

RESUMO

Aging depicts one of the major challenges in pharmacology owing to its complexity and heterogeneity. Thereby, advanced glycated end-products modify extracellular matrix proteins, but the consequences on the skin barrier function remain heavily understudied. Herein, we utilized transmission electron microscopy for the ultrastructural analysis of ribose-induced glycated reconstructed human skin (RHS). Molecular and functional insights substantiated the ultrastructural characterization and proved the relevance of glycated RHS beyond skin aging. In particular, electron microscopy mapped the accumulation and altered spatial orientation of fibrils and filaments in the dermal compartment of glycated RHS. Moreover, the epidermal basement membrane appeared thicker in glycated than in non-glycated RHS, but electron microscopy identified longitudinal clusters of the finest collagen fibrils instead of real thickening. The stratum granulosum contained more cell layers, the morphology of keratohyalin granules decidedly differed, and the stratum corneum lipid order increased in ribose-induced glycated RHS, while the skin barrier function was almost not affected. In conclusion, dermal advanced glycated end-products markedly changed the epidermal morphology, underlining the importance of matrix⁻cell interactions. The phenotype of ribose-induced glycated RHS emulated aged skin in the dermis, while the two to three times increased thickness of the stratum granulosum resembled poorer cornification.


Assuntos
Epiderme/ultraestrutura , Produtos Finais de Glicação Avançada/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Pele/ultraestrutura , Membrana Basal/efeitos dos fármacos , Membrana Basal/ultraestrutura , Diferenciação Celular/efeitos dos fármacos , Derme/efeitos dos fármacos , Derme/ultraestrutura , Epiderme/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/ultraestrutura , Microscopia Eletrônica de Transmissão , Ribose/farmacologia , Pele/efeitos dos fármacos
20.
Biochim Biophys Acta ; 1858(2): 220-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26615916

RESUMO

The composition and organization of stratum corneum lipids play an essential role in skin barrier function. Ceramides represent essential components of this lipid matrix; however, the importance of the individual structural features in ceramides is not fully understood. To probe the structure-permeability relationships in ceramides, we prepared analogs of N-lignoceroylsphingosine with shortened sphingosine (15 and 12 carbons) and acyl chains (2, 4 and 6 carbons) and studied their behavior in skin and in model lipid membranes. Ceramide analogs with pentadecasphingosine (15C) chains were more barrier-perturbing than 12C- and 18C-sphingosine ceramides; the greatest effects were found with 4 to 6C acyls (up to 15 times higher skin permeability compared to an untreated control and up to 79 times higher permeability of model stratum corneum lipid membranes compared to native very long-chain ceramides). Infrared spectroscopy using deuterated lipids and X-ray powder diffraction showed surprisingly similar behavior of the short ceramide membranes in terms of lipid chain order and packing, phase transitions and domain formation. The high- and low-permeability membranes differed in their amide I band shape and lamellar organization. These skin and membrane permeabilization properties of some short ceramides may be explored, for example, for the rational design of permeation enhancers for transdermal drug delivery.


Assuntos
Ceramidas , Sistemas de Liberação de Medicamentos/métodos , Membranas Artificiais , Absorção Cutânea/efeitos dos fármacos , Pele/metabolismo , Animais , Ceramidas/química , Ceramidas/farmacocinética , Ceramidas/farmacologia , Humanos , Permeabilidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA