Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Nature ; 630(8018): 860-865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811736

RESUMO

Composites from 2D nanomaterials show uniquely high electrical, thermal and mechanical properties1,2. Pairing their robustness with polarization rotation is needed for hyperspectral optics in extreme conditions3,4. However, the rigid nanoplatelets have randomized achiral shapes, which scramble the circular polarization of photons with comparable wavelengths. Here we show that multilayer nanocomposites from 2D nanomaterials with complex textured surfaces strongly and controllably rotate light polarization, despite being nano-achiral and partially disordered. The intense circular dichroism (CD) in nanocomposite films originates from the diagonal patterns of wrinkles, grooves or ridges, leading to an angular offset between axes of linear birefringence (LB) and linear dichroism (LD). Stratification of the layer-by-layer (LBL) assembled nanocomposites affords precise engineering of the polarization-active materials from imprecise nanoplatelets with an optical asymmetry g-factor of 1.0, exceeding those of typical nanomaterials by about 500 times. High thermal resilience of the composite optics enables operating temperature as high as 250 °C and imaging of hot emitters in the near-infrared (NIR) part of the spectrum. Combining LBL engineered nanocomposites with achiral dyes results in anisotropic factors for circularly polarized emission approaching the theoretical limit. The generality of the observed phenomena is demonstrated by nanocomposite polarizers from molybdenum sulfide (MoS2), MXene and graphene oxide (GO) and by two manufacturing methods. A large family of LBL optical nanocomponents can be computationally designed and additively engineered for ruggedized optics.

2.
Nature ; 598(7879): 39-48, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616053

RESUMO

Mechanical mechanisms have been used to process information for millennia, with famous examples ranging from the Antikythera mechanism of the Ancient Greeks to the analytical machines of Charles Babbage. More recently, electronic forms of computation and information processing have overtaken these mechanical forms, owing to better potential for miniaturization and integration. However, several unconventional computing approaches have recently been introduced, which blend ideas of information processing, materials science and robotics. This has raised the possibility of new mechanical computing systems that augment traditional electronic computing by interacting with and adapting to their environment. Here we discuss the use of mechanical mechanisms, and associated nonlinearities, as a means of processing information, with a view towards a framework in which adaptable materials and structures act as a distributed information processing network, even enabling information processing to be viewed as a material property, alongside traditional material properties such as strength and stiffness. We focus on approaches to abstract digital logic in mechanical systems, discuss how these systems differ from traditional electronic computing, and highlight the challenges and opportunities that they present.

4.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38597312

RESUMO

Electronic relaxation dynamics of solution-phase redox-exfoliated molybdenum disulfide (MoS2) monolayer and multilayer ensembles are described. MoS2 was exfoliated using polyoxometalate (POM) reductants. This process yields a colloidal heterostructure consisting of MoS2 2D sheet multilayers with surface-bound POM complexes. Using two-dimensional electronic spectroscopy, transient bleaching and photoinduced absorption signals were detected at excitation/detection energies of 1.82/1.87 and 1.82/1.80 eV, respectively. Approximate 100-fs bandgap renormalization (BGR) and subsequent defect- and phonon-mediated relaxation on the picosecond timescale were resolved for several MoS2 thicknesses spanning from 1 to 2 L to ∼20 L. BGR rates were independent of sample thickness and slightly slower than observations for chemical vapor deposition-grown MoS2 monolayers. However, defect-mediated relaxation accelerated ∼10-fold with increased sample thicknesses. The relaxation rates increased from 0.33 ± 0.05 to 1.2 ± 0.1 and 3.1 ± 0.4 ps-1 for 1-2 L, 3-4 L, and 20 L fractions. The thicknesses-dependent relaxation rates for POM-MoS2 heterostructures were modeled using a saturating exponential function that showed saturation at thirteen MoS2 layers. The results suggest that the increased POM surface coverage leads to larger defect density in the POM-MoS2 heterostructure. These are the first descriptions of the influence of sample thickness on electronic relaxation rates in solution-phase redox-exfoliated POM-MoS2 heterostructures. Outcomes of this work are expected to impact the development of solution-phase exfoliation of 2D metal-chalcogenide heterostructures.

5.
Opt Lett ; 48(9): 2297-2300, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126258

RESUMO

By employing the optical Kerr gate technique at 800 nm with 180 fs pulses at 76 MHz, we evaluated the third-order nonlinear optical response of two-dimensional (2D) semiconducting MoS2, semimetallic ZrTe2, and metallic NbS2 and NbSe2. The modulus of the nonlinear refractive index was measured to range from 8.6 × 10-19 m2/W to 5.3 × 10-18 m2/W, with all materials' response time limited by the pulse duration. The physical mechanism to explain the ultrafast response time's origin considers the nature of the 2D material, as will be discussed.

6.
Phys Chem Chem Phys ; 25(13): 9559-9568, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36939519

RESUMO

Niobium disulfide is a layered transition metal dichalcogenide that is being exploited as a two-dimensional material. Although it is a superconductor at low temperatures and demonstrates great potential to be applied as a catalyst or co-catalyst in hydrogen evolution reactions, only a few reports have demonstrated the synthesis of a few-layer NbS2. However, before applications can be pursued, it is essential to understand the main characteristics of the obtained material and its stability under an atmospheric environment. In this work, we conducted a thorough characterization of redox-exfoliated NbS2 nanoflakes regarding their structure and stability in an oxygen-rich environment. Structural, morphological, and spectroscopic characterization demonstrated different fingerprints associated with distinct oxidation processes. This led us to identify oxide species and analyse the stability of the redox exfoliated NbS2 nanosheets in air, suggesting the most likely reaction pathways during the NbS2 interaction with oxygen, which agrees with our density-functional theory results. The mastery over the stability of layered materials is of paramount importance to target future applications, mainly because the electronic properties of these materials are strongly affected by an oxidizing environment.

7.
Opt Express ; 30(14): 25061-25077, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237045

RESUMO

Experimental and theoretical studies of colloidal nanoparticles have primarily focused on accurate characterization and simulation of observable characteristics, such as resonant wavelength. In this paper, we tackle the optimal design of colloidal-nanoparticle ensembles: what is the largest possible per-volume optical cross-section, which designs might achieve them, and can such response be experimentally demonstrated? We combine theory and experiment to answer each of these questions. We derive general bounds on the maximum cross-sections per volume, and we apply an analytical antenna model to show that resonant nanorods should nearly achieve such bounds. We use a modified seed-mediated synthesis approach to synthesize ensembles of gold nanorods with small polydispersity, i.e., small variations in size and aspect ratio. Polydispersity is the key determinant of how closely such ensembles can approach their respective bounds yet is difficult to characterize experimentally without near-field measurements. We show that a certain "extinction metric," connecting extinction cross-section per volume with the radiative efficiencies of the nanoparticles, offers a quantitative prediction of polydispersity via quantities that can be rapidly measured with far-field characterization tools. Our predictions apply generally across all plasmonic materials and offer a roadmap to the largest possible optical response of nanoparticle ensembles.

8.
MRS Bull ; 47(4): 379-388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968542

RESUMO

Abstract: For over three decades, the materials tetrahedron has captured the essence of materials science and engineering with its interdependent elements of processing, structure, properties, and performance. As modern computational and statistical techniques usher in a new paradigm of data-intensive scientific research and discovery, the rate at which the field of materials science and engineering capitalizes on these advances hinges on collaboration between numerous stakeholders. Here, we provide a contemporary extension to the classic materials tetrahedron with a dual framework-adapted from the concept of a "digital twin"-which offers a nexus joining materials science and information science. We believe this high-level framework, the materials-information twin tetrahedra (MITT), will provide stakeholders with a platform to contextualize, translate, and direct efforts in the pursuit of propelling materials science and technology forward. Impact statement: This article provides a contemporary reimagination of the classic materials tetrahedron by augmenting it with parallel notions from information science. Since the materials tetrahedron (processing, structure, properties, performance) made its first debut, advances in computational and informational tools have transformed the landscape and outlook of materials research and development. Drawing inspiration from the notion of a digital twin, the materials-information twin tetrahedra (MITT) framework captures a holistic perspective of materials science and engineering in the presence of modern digital tools and infrastructures. This high-level framework incorporates sustainability and FAIR data principles (Findable, Accessible, Interoperable, Reusable)-factors that recognize how systems impact and interact with other systems-in addition to the data and information flows that play a pivotal role in knowledge generation. The goal of the MITT framework is to give stakeholders from academia, industry, and government a communication tool for focusing efforts around the design, development, and deployment of materials in the years ahead.

9.
Opt Lett ; 46(2): 226-229, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448993

RESUMO

The effective fifth-order susceptibility, ${\chi}_{\rm eff}^{(5)}$, of two-dimensional (2D) semiconducting layered transition metal dichalcogenide (LTMD) molybdenum disulfide (${\rm MoS}_2$) is reported here for the first time, to the best of our knowledge. Using the $ Z $-scan technique with a laser operating at 800 nm, 1 kHz, 100 fs, we investigated the nonlinear behavior of ${\rm MoS}_2$ suspended in acetonitrile (concentration, 70 µg/ml). The effective nonlinear refractive index ${{n}_{4,{eff}}} = - ({7.6 \pm 0.5}) \times {10^{- 26}}\; {{\rm cm}^4}/{{\rm W}^2}$, proportional to ${\rm Re}{\chi}_{\rm eff}^{(5)}$, was measured for monolayer ${\rm MoS}_2$ nanoflakes, prepared by a modified redox exfoliation method. We also determined the value of the nonlinear refractive index ${{n}_2} = + ({4.8 \pm 0.5}) \times {10^{- 16}}\;{{\rm cm}^2}/{\rm W}$, which is related to the material's effective third-order optical susceptibility real part, ${Re\chi}_{\rm eff}^{(3)}$. For comparison, we also investigated the nonlinear response of tungsten disulfide (${\rm WS}_2$) monolayers, prepared by the same method and suspended in acetonitrile (concentration, 40 µg/ml), which only exhibited the third-order nonlinear effect in the same intensity range, up to ${120}\;{{{\rm GW}/{\rm cm}}^2}$. Nonlinear absorption was not observed in either ${\rm MoS}_2$ or ${\rm WS}_2$.

10.
Langmuir ; 37(18): 5447-5456, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33929862

RESUMO

Precise tailoring of two-dimensional nanosheets with organic molecules is critical to passivate the surface and control the reactivity, which is essential for a wide range of applications. Herein, we introduce catechols to functionalize exfoliated MXenes (Ti3C2Tx) in a colloidal suspension. Catechols react spontaneously with Ti3C2Tx surfaces, where binding is initiated from a charge-transfer complex as confirmed by density functional theory (DFT) and UV-vis. Ti3C2Tx sheet interlayer spacing is increased by catechol functionalization, as confirmed by X-ray diffraction (XRD), while Raman and atomic force microscopy-infrared spectroscopy (AFM-IR) measurements indicate binding of catechols at the Ti3C2Tx surface occurs through metal-oxygen bonds, which is supported by DFT calculations. Finally, we demonstrate immobilization of a fluorescent dye on the surface of MXene. Our results establish a strategy for tailoring MXene surfaces via aqueous functionalization with catechols, whereby colloidal stability can be modified and further functionality can be introduced, which could provide excellent anchoring points to grow polymer brushes and tune specific properties.

11.
Proc Natl Acad Sci U S A ; 115(27): 6916-6921, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915077

RESUMO

Robots autonomously interact with their environment through a continual sense-decide-respond control loop. Most commonly, the decide step occurs in a central processing unit; however, the stiffness mismatch between rigid electronics and the compliant bodies of soft robots can impede integration of these systems. We develop a framework for programmable mechanical computation embedded into the structure of soft robots that can augment conventional digital electronic control schemes. Using an origami waterbomb as an experimental platform, we demonstrate a 1-bit mechanical storage device that writes, erases, and rewrites itself in response to a time-varying environmental signal. Further, we show that mechanical coupling between connected origami units can be used to program the behavior of a mechanical bit, produce logic gates such as AND, OR, and three input majority gates, and transmit signals between mechanologic gates. Embedded mechanologic provides a route to add autonomy and intelligence in soft robots and machines.

12.
Nano Lett ; 20(10): 7722-7727, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32931697

RESUMO

The use of two-dimensional electronic spectroscopy (2DES) to study electron-electron scattering dynamics in plasmonic gold nanorods is described. The 2DES resolved the time-dependent plasmon homogeneous line width Γh(t), which was sensitive to changes in Fermi-level carrier densities. This approach was effective because electronic excitation accelerated plasmon dephasing, which broadened Γh. Analysis of Γh(t) indicated plasmon coherence times were decreased by 20-50%, depending on excitation conditions. Electron-electron scattering rates of approximately 0.01 fs-1 were obtained by fitting the time-dependent Γh broadening; rates increased quadratically with both excitation pulse energy and frequency. This rate dependence agreed with Fermi-liquid theory-based predictions. Hot electron thermalization through electron-phonon scattering resulted in Γh narrowing. To our knowledge, this is the first use of the plasmon Γh(t) to isolate electron-electron scattering dynamics in colloidal metal nanoparticles. These results illustrate the effectiveness of 2DES for studying hot electron dynamics of solution-phase plasmonic ensembles.

13.
Phys Chem Chem Phys ; 22(47): 27845-27849, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33245737

RESUMO

Nonlinear optical characterization of nanostructured layered transition metal dichalcogenides (LTMDs) is of fundamental interest for basic knowledge and applied purposes. In particular, second-order optical nonlinearities are the basis for second harmonic generation as well as sum or difference frequency generation and have been studied in some 2D TMDs, especially in those with a semiconducting character. Here we report, for the first time, on the second-order nonlinearity of the semi-metallic ZrTe2 monolayer in acetonitrile suspension (concentration of 4.9 × 1010 particles per cm3), synthesized via a modified redox exfoliation method and characterized using the Hyper-Rayleigh scattering technique in the nanosecond regime. The orientation-averaged first-hyperpolarizability was found to be ß(2ω) = (7.0 ± 0.3) × 10-24 esu per ZrTe2 monolayer flake, the largest reported so far. Polarization-resolved measurements were performed in the monolayer suspension and indicate the dipolar origin of the generated incoherent second harmonic wave.

14.
J Chem Phys ; 153(6): 061101, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287436

RESUMO

The photoluminescence (PL) mechanisms of gold nanorods following nonlinear excitation are described. Using single-particle nonlinear optical measurements, we compare PL signals resulting from both the plasmon-resonant and non-resonant excitations. In both cases, spectrally broad interband PL emission was observed. However, we also show that resonant excitation of the longitudinal plasmon mode leads to an increased photonic density of states at energies corresponding to the transverse plasmon resonance. This increased density of states is achieved by a multi-step mechanism, which is initiated by three-photon excitation and followed by an Auger relaxation process. Importantly, the results show that nonlinear excitation can lead to energy and polarization modulation of nanoparticle optical signals that are not observed using linear excitation. This work also demonstrates the effectiveness of single-nanoparticle PL studies for understanding how plasmon-resonant excitations can be used to modify hot carrier distributions.

15.
Nano Lett ; 15(3): 1836-42, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25646978

RESUMO

Metal nanoparticle assemblies are promising materials for nanophotonic applications due to novel linear and nonlinear optical properties arising from their plasmon modes. However, scalable fabrication approaches that provide both precision nano- and macroarchitectures, and performance commensurate with design and model predictions, have been limiting. Herein, we demonstrate controlled and efficient nanofocusing of the fundamental and second harmonic frequencies of incident linearly and circularly polarized light using reduced symmetry gold nanoparticle dimers formed by surface-directed assembly of colloidal nanoparticles. Large ordered arrays (>100) of these C∞v heterodimers (ratio of radii R1/R2 = 150 nm/50 nm = 3; gap distance l = 1 ± 0.5 nm) exhibit second harmonic generation and structure-dependent chiro-optic activity with the circular dichroism ratio of individual heterodimers varying less than 20% across the array, demonstrating precision and uniformity at a large scale. These nonlinear optical properties were mediated by interparticle plasmon coupling. Additionally, the versatility of the fabrication is demonstrated on a variety of substrates including flexible polymers. Numerical simulations guide architecture design as well as validating the experimental results, thus confirming the ability to optimize second harmonic yield and induce chiro-optical responses for compact sensors, optical modulators, and tunable light sources by rational design and fabrication of the nanostructures.

16.
Angew Chem Int Ed Engl ; 55(42): 13090-13094, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27633941

RESUMO

Adding colloidal nanoparticles into liquid-crystal media has become a promising pathway either to enhance or to introduce novel properties for improved device performance. Here we designed and synthesized new colloidal hybrid silica nanoparticles passivated with a mesogenic monolayer on the surface to facilitate their organo-solubility and compatibility in a liquid-crystal host. The resulting nanoparticles were identified by 1 H NMR spectroscopy, TEM, TGA, and UV/Vis techniques, and the hybrid nanoparticles were doped into a dual-frequency cholesteric liquid-crystal host to appraise both their compatibility with the host and the effect of the doping concentration on their electro-optical properties. Interestingly, the silica-nanoparticle-doped liquid-crystalline nanocomposites were found to be able to dynamically self-organize into a helical configuration and exhibit multi-stability, that is, homeotropic (transparent), focal conic (opaque), and planar states (partially transparent), depending on the frequency applied at sustained low voltage. Significantly, a higher contrast ratio between the transparent state and scattering state was accomplished in the nanoparticle-embedded liquid-crystal systems.


Assuntos
Cristais Líquidos/química , Nanopartículas/química , Dióxido de Silício/química , Coloides/síntese química , Coloides/química , Tamanho da Partícula
17.
Soft Matter ; 11(37): 7288-95, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26270868

RESUMO

Aligned liquid crystal elastomers (LCEs) are capable of undergoing large reversible shape change in response to thermal stimuli and may act as actuators for many potential applications such as self-assembly and deployment of micro devices. Recent advances in LCE patterning tools have demonstrated sub-millimetre control of director orientation, enabling the preparation of materials with arbitrarily complex director fields. However, without design tools to connect the 2D director pattern with the activated 3D shape, LCE design relies on intuition and trial and error. Here we present a design methodology to generate reliable folding in monolithic LCEs designed with topology optimization. The distributions of order/disorder and director orientations are optimized so that the remotely actuated deformation closely matches a target deformation for origami folding. The optimal design exhibits a strategy to counteract the mechanical frustration that may lead to an undesirable deformation, such as anti-clastic bending. Multi-hinge networks were developed using insights from the optimal hinge designs and were demonstrated through the fabrication and reversible actuation of a self-folding box. Topology optimization provides an important step towards leveraging the opportunities afforded by LCE patterning into functional designs.

18.
J Chem Phys ; 142(15): 151101, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25903859

RESUMO

We demonstrate a novel method for second harmonic generation-detected circular dichroism (CD) imaging based on the use of phase-locked, temporally delayed femtosecond laser pulses. The polarization state of the fundamental wave was controllably changed over 2π rad by using a birefringent delay line, which provided attosecond inter-pulse delays for orthogonal phase-locked replicas; the achievable phase stability was 14 as. By introducing either a positive or negative delay of ∼667 as, we induced a ±π/2 phase shift between the orthogonally polarized pulses, resulting in left circularly polarized or right circularly polarized light. CD imaging performance using the pulse sequence was compared to results obtained for plasmonic nanoantennas using a rotating quarter-wave plate. The pulse sequence is expected to simplify polarization-resolved optical imaging by reducing experimental artifacts and decreasing image acquisition times. This method can be easily extended to other CD spectroscopy measurements.

19.
Soft Matter ; 10(9): 1400-10, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24651881

RESUMO

Light responsive materials that exhibit wirelessly actuated, multidimensional deformation are excellent candidates for programmable matter applications such as morphing structures or soft robotics. A central challenge to designing adaptive structures from these materials is the ability accurately predict three dimensional deformations. Previous modeling efforts have focused almost exclusively on pure bending. Herein we examine key material parameters affecting light driven flexural-torsional response in azobenzene functionalized liquid crystal polymer networks. We show that a great deal of control can be obtained by specifying material alignment and actuating the material with polarized light. Insight gained from the theoretical framework here lays the foundation for more extensive modeling efforts to combine polarization controlled flexural-torsional deformations with complex geometry, boundary conditions, and loading conditions.


Assuntos
Compostos Azo/química , Luz , Polímeros/química , Robótica , Simulação por Computador
20.
Nano Lett ; 13(5): 2220-5, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23607657

RESUMO

Self-assembled plasmonic Dolmen structures consisting of small gold nanorods (length = 50 nm and diameter = 20 nm) with a few nanometer gaps are observed to show coherent effects of super-radiance and characteristics of Fano resonance due to the significantly reduced symmetry of the structure. Relative to previous larger structures from top-down electron-beam lithography, the single crystallinity and atomically smooth surfaces of these self-assembled plasmonic structures result in 50% narrower resonances, and the small gaps with associated strong coupling enable observation of multiple dark and bright modes. By tilting the cap monomer with respect to the base dimer an order of magnitude increase in E-field enhancement at the Fano dip is obtained. In addition, a spectrally broad mode is observed indicating the strong impact of the geometry of the structure on the nature of coupled modes. The highly localized electric near-fields in the gaps will enable strong light matter interactions and the narrow resonances will be useful for improved figure of merits in inexpensive chemical and biosensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA