Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Virol ; : e0083124, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856119

RESUMO

Fungi harbor a vast diversity of mobile genetic elements (MGEs). Recently, novel fungal MGEs, tentatively referred to as 'ambiviruses,' were described. 'Ambiviruses' have single-stranded RNA genomes of about 4-5 kb in length that contain at least two open reading frames (ORFs) in non-overlapping ambisense orientation. Both ORFs are conserved among all currently known 'ambiviruses,' and one of them encodes a distinct viral RNA-directed RNA polymerase (RdRP), the hallmark gene of ribovirian kingdom Orthornavirae. However, 'ambivirus' genomes are circular and predicted to replicate via a rolling-circle mechanism. Their genomes are also predicted to form rod-like structures and contain ribozymes in various combinations in both sense and antisense orientations-features reminiscent of viroids, virusoids, ribozyvirian kolmiovirids, and yet-unclassified MGEs (such as 'epsilonviruses,' 'zetaviruses,' and some 'obelisks'). As a first step toward the formal classification of 'ambiviruses,' the International Committee on Taxonomy of Viruses (ICTV) recently approved the establishment of a novel ribovirian phylum, Ambiviricota, to accommodate an initial set of 20 members with well-annotated genome sequences.

2.
Environ Microbiol ; 23(9): 5200-5221, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33848054

RESUMO

Eighty-eight Phytophthora cactorum strains isolated from crown or leather rot of strawberry in 1971-2019 were screened for viruses using RNA-seq and RT-PCR. Remarkably, all but one isolate were virus-infected, most of them harbouring more than one virus of different genera or species. The most common virus occurring in 94% of the isolates was the Phytophthora cactorum RNA virus 1 (PcRV1) resembling members of Totiviridae. Novel viruses related to members of Endornaviridae, named Phytophthora cactorum alphaendornaviruses 1-3 (PcAEV1-3), were found in 57% of the isolates. Four isolates hosted viruses with affinities to Bunyaviridae, named Phytophthora cactorum bunyaviruses 1-3 (PcBV1-3), and a virus resembling members of the proposed genus 'Ustivirus', named Phytophthora cactorum usti-like virus (PcUV1), was found in a single isolate. Most of the virus species were represented by several distinct strains sharing ≥81.4% aa sequence identity. We found no evidence of spatial differentiation but some temporal changes in the P. cactorum virus community were observed. Some isolates harboured two or more closely related strains of the same virus (PcAEV1 or PcRV1) sharing 86.6%-96.4% nt identity in their polymerase sequence. This was surprising as viruses with such a high similarity are typically mutually exclusive.


Assuntos
Fragaria , Phytophthora , Phytophthora/genética , Doenças das Plantas
3.
Arch Virol ; 165(7): 1679-1682, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32367229

RESUMO

This report describes the complete genome sequence of a double-stranded RNA (dsRNA) virus infecting the oomycetous plant pathogen Phytophthora cactorum. The virus genome consists of a single dsRNA segment of 5699 bp with two open reading frames predicted to overlap with each other and encoding a putative capsid protein of 705 aa and an RNA-dependent RNA polymerase of 779 aa. Sequence comparisons indicated that this virus, designated as "Phytophthora cactorum RNA virus 1" (PcRV1), shares the highest sequence similarity with the unclassified Pythium splendens RNA virus 1 (58% RdRp aa sequence identity). Phylogenetic analysis revealed that these two oomycete viruses group together with Giardia lamblia virus (GVL; family Totiviridae) and several unclassified toti-like viruses from arthropods, fish and fungi. This is the first report of a toti-like virus in a member of the genus Phytophthora and the first virus characterized in P. cactorum.


Assuntos
Genoma Viral , Phytophthora/virologia , Totiviridae/genética , Sequência de Bases , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/microbiologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , Totiviridae/classificação , Totiviridae/isolamento & purificação
4.
J Virol ; 92(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29237832

RESUMO

The fungal genus Heterobasidion includes some of the most devastating conifer pathogens in the boreal forest region. In this study, we showed that the alphapartitivirus Heterobasidion partitivirus 13 from Heterobasidion annosum (HetPV13-an1) is the main causal agent of severe phenotypic debilitation in the host fungus. Based on RNA sequencing using isogenic virus-infected and cured fungal strains, HetPV13-an1 affected the transcription of 683 genes, of which 60% were downregulated and 40% upregulated. Alterations observed in carbohydrate and amino acid metabolism suggest that the virus causes a state of starvation, which is compensated for by alternative synthesis routes. We used dual cultures to transmit HetPV13-an1 into new strains of H. annosum and Heterobasidion parviporum The three strains of H. parviporum that acquired the virus showed noticeable growth reduction on rich culturing medium, while only two of six H. annosum isolates tested showed significant debilitation. Based on reverse transcription-quantitative PCR (RT-qPCR) analysis, the response toward HetPV13-an1 infection was somewhat different in H. annosum and H. parviporum We assessed the effects of HetPV13-an1 on the wood colonization efficacy of H. parviporum in a field experiment where 46 Norway spruce trees were inoculated with isogenic strains with or without the virus. The virus-infected H. parviporum strain showed considerably less growth within living trees than the isolate without HetPV13-an1, indicating that the virus also causes growth debilitation in natural substrates.IMPORTANCE A biocontrol method restricting the spread of Heterobasidion species would be highly beneficial to forestry, as these fungi are difficult to eradicate from diseased forest stands and cause approximate annual losses of €800 million in Europe. We used virus curing and reintroduction experiments and RNA sequencing to show that the alphapartitivirus HetPV13-an1 affects many basic cellular functions of the white rot wood decay fungus Heterobasidion annosum, which results in aberrant hyphal morphology and a low growth rate. Dual fungal cultures were used to introduce HetPV13-an1 into a new host species, Heterobasidion parviporum, and field experiments confirmed the capability of the virus to reduce the growth of H. parviporum in living spruce wood. Taken together, our results suggest that HetPV13-an1 shows potential for the development of a future biocontrol agent against Heterobasidion fungi.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Basidiomycota/genética , Basidiomycota/virologia , Doenças das Plantas/microbiologia , Vírus de RNA/fisiologia , Atropina/metabolismo , Basidiomycota/patogenicidade , Agentes de Controle Biológico , Metabolismo dos Carboidratos , Ciclo Celular , Diazepam/metabolismo , Combinação de Medicamentos , Emodina/análogos & derivados , Emodina/metabolismo , Europa (Continente) , Florestas , Regulação Fúngica da Expressão Gênica , Genótipo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Metabolismo , Mitocôndrias/metabolismo , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/virologia , Noruega , Fenótipo , Fenilpropanolamina/metabolismo , Picea/microbiologia , Doenças das Plantas/economia , Infecções por Vírus de RNA , Vírus de RNA/genética , RNA Viral/genética , RNA Viral/isolamento & purificação , Análise de Sequência de RNA , Tri-Iodotironina/metabolismo
5.
Phytopathology ; 109(3): 488-497, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30070618

RESUMO

Recent developments in high-throughput sequencing (HTS), also called next-generation sequencing (NGS), technologies and bioinformatics have drastically changed research on viral pathogens and spurred growing interest in the field of virus diagnostics. However, the reliability of HTS-based virus detection protocols must be evaluated before adopting them for diagnostics. Many different bioinformatics algorithms aimed at detecting viruses in HTS data have been reported but little attention has been paid thus far to their sensitivity and reliability for diagnostic purposes. Therefore, we compared the ability of 21 plant virology laboratories, each employing a different bioinformatics pipeline, to detect 12 plant viruses through a double-blind large-scale performance test using 10 datasets of 21- to 24-nucleotide small RNA (sRNA) sequences from three different infected plants. The sensitivity of virus detection ranged between 35 and 100% among participants, with a marked negative effect when sequence depth decreased. The false-positive detection rate was very low and mainly related to the identification of host genome-integrated viral sequences or misinterpretation of the results. Reproducibility was high (91.6%). This work revealed the key influence of bioinformatics strategies for the sensitive detection of viruses in HTS sRNA datasets and, more specifically (i) the difficulty in detecting viral agents when they are novel or their sRNA abundance is low, (ii) the influence of key parameters at both assembly and annotation steps, (iii) the importance of completeness of reference sequence databases, and (iv) the significant level of scientific expertise needed when interpreting pipeline results. Overall, this work underlines key parameters and proposes recommendations for reliable sRNA-based detection of known and unknown viruses.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas , Biologia Computacional , Método Duplo-Cego , Reprodutibilidade dos Testes
6.
BMC Genomics ; 19(1): 220, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29580224

RESUMO

BACKGROUND: Heterobasidion parviporum is an economically most important fungal forest pathogen in northern Europe, causing root and butt rot disease of Norway spruce (Picea abies (L.) Karst.). The mechanisms underlying the pathogenesis and virulence of this species remain elusive. No reference genome to facilitate functional analysis is available for this species. RESULTS: To better understand the virulence factor at both phenotypic and genomic level, we characterized 15 H. parviporum isolates originating from different locations across Finland for virulence, vegetative growth, sporulation and saprotrophic wood decay. Wood decay capability and latitude of fungal origins exerted interactive effects on their virulence and appeared important for H. parviporum virulence. We sequenced the most virulent isolate, the first full genome sequences of H. parviporum as a reference genome, and re-sequenced the remaining 14 H. parviporum isolates. Genome-wide alignments and intrinsic polymorphism analysis showed that these isolates exhibited overall high genomic similarity with an average of at least 96% nucleotide identity when compared to the reference, yet had remarkable intra-specific level of polymorphism with a bias for CpG to TpG mutations. Reads mapping coverage analysis enabled the classification of all predicted genes into five groups and uncovered two genomic regions exclusively present in the reference with putative contribution to its higher virulence. Genes enriched for copy number variations (deletions and duplications) and nucleotide polymorphism were involved in oxidation-reduction processes and encoding domains relevant to transcription factors. Some secreted protein coding genes based on the genome-wide selection pressure, or the presence of variants were proposed as potential virulence candidates. CONCLUSION: Our study reported on the first reference genome sequence for this Norway spruce pathogen (H. parviporum). Comparative genomics analysis gave insight into the overall genomic variation among this fungal species and also facilitated the identification of several secreted protein coding genes as putative virulence factors for the further functional analysis. We also analyzed and identified phenotypic traits potentially linked to its virulence.


Assuntos
Basidiomycota/genética , Basidiomycota/isolamento & purificação , Genoma Viral , Genômica/métodos , Picea/microbiologia , Doenças das Plantas/microbiologia , Fatores de Virulência/genética , Polimorfismo de Nucleotídeo Único
7.
J Gen Virol ; 99(1): 17-18, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29214972

RESUMO

The Partitiviridae is a family of small, isometric, non-enveloped viruses with bisegmented double-stranded (ds) RNA genomes of 3-4.8 kbp. The two genome segments are individually encapsidated. The family has five genera, with characteristic hosts for members of each genus: either plants or fungi for genera Alphapartitivirus and Betapartitivirus, fungi for genus Gammapartitivirus, plants for genus Deltapartitivirus and protozoa for genus Cryspovirus. Partitiviruses are transmitted intracellularly via seeds (plants), oocysts (protozoa) or hyphal anastomosis, cell division and sporogenesis (fungi); there are no known natural vectors. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Partitiviridae, which is available at www.ictv.global/report/partitiviridae.


Assuntos
Genoma Viral , Filogenia , Vírus de RNA/genética , RNA Viral/genética , Vírion/genética , Alveolados/virologia , Fungos/virologia , Plantas/virologia , Vírus de RNA/classificação , Vírus de RNA/ultraestrutura , Terminologia como Assunto , Vírion/ultraestrutura , Replicação Viral
8.
Microb Ecol ; 75(3): 622-630, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28779297

RESUMO

We investigated the diversity and spatial distribution of viruses infecting strains of the root rot fungus Heterobasidion annosum collected from pine stumps at a heavily infected forest site. Four different partitiviruses were detected in 14 H. annosum isolates at the study site, constituting approximately 29% of all Heterobasidion isolates investigated (N = 48). Two of the viruses detected were new partitiviruses designated here as Heterobasidion partitivirus 16 (HetPV16) and HetPV20, and two were previously known partitiviruses: HetPV7 and HetPV13. The two new partitiviruses found, HetPV16-an1 and HetPV20-an1, shared ~70% RdRp nucleotide sequence identity with the alphapartitivirus Rosellinia necatrix partitivirus 2, and less than 40% identity with known viruses of Heterobasidion spp. HetPV7-an1 was closely similar to HetPV7-pa1 isolated earlier from Heterobasidion parviporum, supporting the view of conspecific virus pools in different Heterobasidion species. Three fungal isolates were found to be co-infected with two different partitivirus strains (HetPV7-an1 and HetPV13-an2 or HetPV16-an1 and HetPV20-an1). Different isolates representing each host clone had variable virus compositions, and virus strains occurring in more than one host clone showed minor sequence variations between clones.


Assuntos
Basidiomycota/virologia , Biodiversidade , Florestas , Micovírus/fisiologia , Pinus/microbiologia , Doenças das Plantas/microbiologia , Vírus de RNA/fisiologia , Basidiomycota/isolamento & purificação , Basidiomycota/patogenicidade , Coinfecção/virologia , Finlândia , Micovírus/classificação , Micovírus/genética , Micovírus/isolamento & purificação , Genes Virais/genética , Variação Genética , Genoma Viral , Doenças das Plantas/prevenção & controle , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , RNA Viral/genética , RNA Viral/isolamento & purificação , Análise de Sequência , Fenômenos Fisiológicos Virais
9.
Arch Virol ; 163(4): 1113-1116, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29327238

RESUMO

Root rot fungi of the genus Heterobasidion are highly destructive conifer pathogens in the northern Boreal forest region. This report describes the complete genome sequence of Heterobasidion partitivirus 20 infecting a Finnish strain of Heterobasidion annosum. The bisegmented dsRNA genome of HetPV20-an1 encodes a predicted RNA-dependent RNA polymerase of 605 amino acids (aa) and a capsid protein of 536 aa. Based on sequence similarity and phylogenetic analysis, this virus is a new member of the genus Alphapartitivirus. HetPV20-an1 shares ~65% RdRP aa sequence identity with the most similar virus strain, Rosellinia necatrix partitivirus 2, whereas the CP of HetPV20-an1 is most similar to that of rose partitivirus with ~27% overall aa sequence identity. HetPV20-an1 is only distantly related to previously known partitiviruses of Heterobasidion species and shares ~29% RdRP aa sequence identity and ~16% CP aa sequence identity with Heterobasidion partitivirus 1 from H. abietinum.


Assuntos
Basidiomycota/virologia , Micovírus/genética , Genoma Viral , Vírus de RNA/genética , RNA Viral/genética , Traqueófitas/microbiologia , Proteínas do Capsídeo/genética , Micovírus/classificação , Micovírus/isolamento & purificação , Expressão Gênica , Filogenia , Doenças das Plantas/microbiologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA de Cadeia Dupla/genética , RNA Polimerase Dependente de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sequenciamento Completo do Genoma
10.
J Gen Virol ; 96(Pt 3): 714-725, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25480928

RESUMO

Analysis of virus-derived small RNAs with high-throughput sequencing has been successful for detecting novel viruses in plants and invertebrates. However, the applicability of this method has not been demonstrated in fungi, although fungi were among the first organisms reported to utilize RNA silencing. Here, we used virus-infected isolates of the fungal species complex Heterobasidion annosum sensu lato as a model system to test whether mycovirus genome segments can be detected with small RNA deep sequencing. Species of the genus Heterobasidion are some of the most devastating forest pathogens in boreal forests. These fungi cause wood decay and are commonly infected with species of the family Partitiviridae and the unassigned virus species Heterobasidion RNA virus 6. Small RNA deep sequencing allowed the simultaneous detection of all eight double-stranded RNA virus strains known to be present in the tested samples and one putative mitovirus species (family Narnaviridae) with a single-stranded RNA genome, designated here as Heterobasidion mitovirus 1. Prior to this study, no members of the family Narnaviridae had been described as infecting species of Heterobasidion. Quantification of viral double- and single-stranded RNA with quantitative PCR indicated that co-infecting viral species and viruses with segmented genomes can be detected with small RNA deep sequencing despite vast differences in the amount of RNA. This is the first study demonstrating the usefulness of this method for detecting fungal viruses. Moreover, the results suggest that viral genomes are processed into small RNAs by different species of Heterobasidion.


Assuntos
Fungos/virologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Biologia Computacional , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Vírus de RNA/genética
11.
Arch Virol ; 160(8): 2093-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26025157

RESUMO

Pitch canker is a serious disease of pines caused by the ascomycete fungus Gibberella circinata (anamorph = Fusarium circinatum). Three distinct mitovirus strains have been described in this fungus: Fusarium circinatum mitovirus 1 (FcMV1), FcMV2-1 and FcMV2-2. Here, we investigated the frequency and population variation of these viruses and closely related sequence variants in northern Spain using RT-PCR and sequencing. Each virus strain and similar sequence variants shared >95 % sequence identity and were collectively designated as virus types. All virus types were relatively common in Spain, with estimated prevalence of 18.5 %, 8.9 % and 16.3 % for FcMV1, FcMV2-1 and FcMV2-2, respectively.


Assuntos
Fusarium/virologia , Pinus/microbiologia , Doenças das Plantas/microbiologia , Vírus de RNA/isolamento & purificação , Fusarium/genética , Fusarium/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Espanha
12.
Arch Virol ; 160(8): 1967-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26047648

RESUMO

The European race of Gremmeniella abietina (Lagerberg) Morelet is the causal agent of stem canker and shoot blight on numerous conifers in Europe and North America. It comprises different species and biotypes in which the presence of mycoviruses has been determined. In this report, we describe the full-length sequence of the RNA-dependent RNA polymerase (RdRp) of a putative novel virus, Gremmeniella abietina RNA virus 6 (GaRV6), with 2165 nt and a GC content of 54.7 %. A BLASTp search using the deduced RdRp amino acid sequence confirmed GaRV6 to be related to members of a still unassigned virus taxon, which includes, e.g., Fusarium graminearum dsRNA mycovirus 4 (FgV-4) and the mutualistic Curvularia thermal tolerance virus (CThTV). The prevalence and genetic diversity of GaRV6 was also studied within the European race of G. abietina. We examined 162 isolates originating from Canada, the Czech Republic, Finland, Italy, Montenegro, Serbia, Spain, Switzerland, Turkey and the United States. According to direct specific reverse transcription (RT) PCR screening based on the RdRp sequence, the virus appears to be present only in Spain, where it is relatively abundant but genetically highly uniform.


Assuntos
Ascomicetos/virologia , Doenças das Plantas/microbiologia , Vírus de RNA/isolamento & purificação , Traqueófitas/microbiologia , Ascomicetos/fisiologia , Variação Genética , Dados de Sequência Molecular , Filogenia , Prevalência , Vírus de RNA/classificação , Vírus de RNA/genética , Proteínas Virais/genética
13.
Arch Virol ; 159(8): 2153-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24519462

RESUMO

Fusarium circinatum Nirenberg & O'Donnell (teleomorph = Gibberella circinata) is the causal agent of pitch canker disease of pines. Since 2004 it has been present in Europe, particularly in northern Spain, affecting P. radiata and P. pinaster in plantations and nurseries. The disease has now also spread to other European countries, including France, Italy and Portugal. In this report, we describe three novel members of the genus Mitovirus from a Spanish isolate of F. circinatum: Fusarium circinatum mitovirus 1 (FcMV1), FcMV2-1 and FcMV2-2. Using a mitochondrial translation table, the complete 2419-bp genome of FcMV1 encodes an RNA-dependent RNA polymerase of 731 amino acids (GC-content ca 30 %). The partial genomes of FcMV2-1 and FcMV2-2 (2193 and 1973 bp, respectively) share ca 48 % RdRp sequence similarity at the aa level and might be regarded as conspecific, while FcMV1 is clearly distinct, showing 32-35 % polymerase similarity to the other strains. However, FcMV1 shared 46 % protein-level similarity with Thielaviopsis basicola mitovirus. This is the first study to report viruses in F. circinatum, as well as the first time that mitovirus genome sequences are described from Fusarium spp.


Assuntos
Fusarium/virologia , Prunus/microbiologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Genoma Viral , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Vírus de RNA/genética , Vírus de RNA/fisiologia
14.
Methods Mol Biol ; 2732: 45-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38060117

RESUMO

This chapter describes protocols suitable for the detection and identification of RNA viruses infecting oomycetes (so-called water molds of Kingdom Heterokonta, Stramenopila), focusing on species of Phytophthora and exemplified by P. fragariae. The protocol includes laboratory procedures for oomycete cultivation and total RNA extraction from harvested mycelia, followed by instructions on suitable parameters given for sequencing companies on ribosomal RNA depletion, cDNA library preparation, and total RNA-sequencing (RNA-Seq). We also describe the bioinformatics steps needed for de novo assembly of raw reads into contigs, removal of host-associated contigs, and virus identification by database searches, as well as host validation by RT-PCR. All steps are described using an exemplar RNA-Seq library containing a yet undescribed fusagravirus hosted by a P. fragariae isolate.


Assuntos
Phytophthora , Vírus , Phytophthora/genética , Vírus/genética , Fungos/genética , Biologia Computacional , RNA
15.
Microb Ecol ; 65(1): 28-38, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22961364

RESUMO

Viruses infecting the conifer pathogenic fungus Heterobasidion annosum sensu lato are intracellular and spread via anastomosis contacts. In the laboratory, these viruses transmit readily even between somatically incompatible isolates, but their dispersal capacity in natural conditions has not been previously studied. We introduced a mycovirus to a heavily diseased forest site by inoculating Norway spruce stumps with heartrot decay using a mycelial suspension of Heterobasidion parviporum strain RT3.49C hosting the partitivirus strain HetRV4-pa1. The Heterobasidion population at the sample plot was screened for mycoviruses prior to and after the inoculation. Based on sequence analysis, the resident H. parviporum strains harbored six different strains of the virus species Heterobasidion RNA virus 6 (HetRV6) and one strain of HetRV4 prior to the inoculation. After three growth seasons, the inoculated H. parviporum host strain was not detected, but the introduced virus had infected two resident H. parviporum genets. The presence of a preexisting HetRV6 infection did not hinder spread of the introduced partitivirus but resulted in coinfections instead. The resident HetRV6 virus population seemed to be highly stable during the incubation period, while the single indigenous HetRV4 infection was not detected after the inoculation. In laboratory infection experiments, the introduced virus could be transmitted successfully into all of the resident H. parviporum genets. This study shows for the first time transmission of a Heterobasidion virus between somatically incompatible hosts in natural conditions.


Assuntos
Basidiomycota/virologia , Picea/microbiologia , Vírus de RNA/fisiologia , Basidiomycota/genética , Basidiomycota/patogenicidade , Genótipo , Micélio/virologia , Infecções por Vírus de RNA/transmissão , RNA Viral/isolamento & purificação
17.
Arch Virol ; 158(7): 1613-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23456423

RESUMO

The Heterobasidion annosum (Fr.) Bref. complex includes some of the most destructive conifer pathogenic fungi in the Boreal forest region. H. irregulare, formerly known as the North American pine type of H. annosum, was introduced from North America into Italy during the Second World War and occurs as an invasive pathogen in Pinus pinea stands together with the native European species H. annosum sensu stricto. We describe the complete nucleotide sequence of a new putative partitivirus from an Italian strain of H. irregulare. The bisegmented genome of HetRV8-ir1 encodes an RNA-dependent RNA polymerase of 704 aa and a capsid protein of 638 aa. The polymerase and capsid aa sequences are relatively similar (59-78 %) to those of Fusarium poae virus 1, Pleurotus ostreatus virus 1, and grapevine-associated partitivirus 1. HetRV8-ir1 is the first virus described from H. irregulare, and it is distantly related to previously known partitiviruses of Heterobasidion species.


Assuntos
Basidiomycota/virologia , Genoma Viral , Vírus de RNA/genética , RNA Viral/genética , Análise de Sequência de DNA , Proteínas do Capsídeo/genética , Itália , Dados de Sequência Molecular , Fases de Leitura Aberta , Vírus de RNA/isolamento & purificação , RNA Polimerase Dependente de RNA/genética , Homologia de Sequência de Aminoácidos
18.
Adv Virus Res ; 115: 1-86, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37173063

RESUMO

Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.


Assuntos
Micovírus , Vírus de RNA , Vírus , Micovírus/genética , Filogenia , Viroma , Vírus/genética , RNA de Cadeia Dupla , Vírus de RNA/genética , RNA Viral/genética , Genoma Viral
19.
PeerJ ; 11: e15816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601254

RESUMO

Recent developments in high-throughput sequencing (HTS) technologies and bioinformatics have drastically changed research in virology, especially for virus discovery. Indeed, proper monitoring of the viral population requires information on the different isolates circulating in the studied area. For this purpose, HTS has greatly facilitated the sequencing of new genomes of detected viruses and their comparison. However, bioinformatics analyses allowing reconstruction of genome sequences and detection of single nucleotide polymorphisms (SNPs) can potentially create bias and has not been widely addressed so far. Therefore, more knowledge is required on the limitations of predicting SNPs based on HTS-generated sequence samples. To address this issue, we compared the ability of 14 plant virology laboratories, each employing a different bioinformatics pipeline, to detect 21 variants of pepino mosaic virus (PepMV) in three samples through large-scale performance testing (PT) using three artificially designed datasets. To evaluate the impact of bioinformatics analyses, they were divided into three key steps: reads pre-processing, virus-isolate identification, and variant calling. Each step was evaluated independently through an original, PT design including discussion and validation between participants at each step. Overall, this work underlines key parameters influencing SNPs detection and proposes recommendations for reliable variant calling for plant viruses. The identification of the closest reference, mapping parameters and manual validation of the detection were recognized as the most impactful analysis steps for the success of the SNPs detections. Strategies to improve the prediction of SNPs are also discussed.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Genoma Viral/genética , Biologia Computacional , Conhecimento
20.
Front Microbiol ; 13: 911474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783401

RESUMO

Phytophthora castaneae, an oomycete pathogen causing root and trunk rot of different tree species in Asia, was shown to harbor a rich diversity of novel viruses from different families. Four P. castaneae isolates collected from Chamaecyparis hodginsii in a semi-natural montane forest site in Vietnam were investigated for viral presence by traditional and next-generation sequencing (NGS) techniques, i.e., double-stranded RNA (dsRNA) extraction and high-throughput sequencing (HTS) of small RNAs (sRNAs) and total RNA. Genome organization, sequence similarity, and phylogenetic analyses indicated that the viruses were related to members of the order Bunyavirales and families Endornaviridae, Megabirnaviridae, Narnaviridae, Totiviridae, and the proposed family "Fusagraviridae." The study describes six novel viruses: Phytophthora castaneae RNA virus 1-5 (PcaRV1-5) and Phytophthora castaneae negative-stranded RNA virus 1 (PcaNSRV1). All six viruses were detected by sRNA sequencing, which demonstrates an active RNA interference (RNAi) system targeting viruses in P. castaneae. To our knowledge, this is the first report of viruses in P. castaneae and the whole Phytophthora major Clade 5, as well as of the activity of an RNAi mechanism targeting viral genomes among Clade 5 species. PcaRV1 is the first megabirnavirus described in oomycetes and the genus Phytophthora.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA