Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
EMBO J ; 38(12)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31126958

RESUMO

Autophagy and energy metabolism are known to follow a circadian pattern. However, it is unclear whether autophagy and the circadian clock are coordinated by common control mechanisms. Here, we show that the oscillation of autophagy genes is dependent on the nutrient-sensitive activation of TFEB and TFE3, key regulators of autophagy, lysosomal biogenesis, and cell homeostasis. TFEB and TFE3 display a circadian activation over the 24-h cycle and are responsible for the rhythmic induction of genes involved in autophagy during the light phase. Genetic ablation of TFEB and TFE3 in mice results in deregulated autophagy over the diurnal cycle and altered gene expression causing abnormal circadian wheel-running behavior. In addition, TFEB and TFE3 directly regulate the expression of Rev-erbα (Nr1d1), a transcriptional repressor component of the core clock machinery also involved in the regulation of whole-body metabolism and autophagy. Comparative analysis of the cistromes of TFEB/TFE3 and REV-ERBα showed an extensive overlap of their binding sites, particularly in genes involved in autophagy and metabolic functions. These data reveal a direct link between nutrient and clock-dependent regulation of gene expression shedding a new light on the crosstalk between autophagy, metabolism, and circadian cycles.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Relógios Circadianos , Metabolismo Energético , Nutrientes/fisiologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Sítios de Ligação , Células Cultivadas , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , Nutrientes/farmacologia , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
2.
Brain ; 144(10): 3061-3077, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33914858

RESUMO

WWOX-related epileptic encephalopathy (WOREE) syndrome caused by human germline bi-allelic mutations in WWOX is a neurodevelopmental disorder characterized by intractable epilepsy, severe developmental delay, ataxia and premature death at the age of 2-4 years. The underlying mechanisms of WWOX actions are poorly understood. In the current study, we show that specific neuronal deletion of murine Wwox produces phenotypes typical of the Wwox-null mutation leading to brain hyperexcitability, intractable epilepsy, ataxia and postnatal lethality. A significant decrease in transcript levels of genes involved in myelination was observed in mouse cortex and hippocampus. Wwox-mutant mice exhibited reduced maturation of oligodendrocytes, reduced myelinated axons and impaired axonal conductivity. Brain hyperexcitability and hypomyelination were also revealed in human brain organoids with a WWOX deletion. These findings provide cellular and molecular evidence for myelination defects and hyperexcitability in the WOREE syndrome linked to neuronal function of WWOX.


Assuntos
Epilepsia/genética , Deleção de Genes , Bainha de Mielina/genética , Neurônios/fisiologia , Oxidorredutase com Domínios WW/deficiência , Oxidorredutase com Domínios WW/genética , Animais , Encéfalo/patologia , Técnicas de Cocultura , Epilepsia/patologia , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Bainha de Mielina/patologia , Neurônios/patologia , Organoides , Oxidorredutase com Domínios WW/antagonistas & inibidores
3.
Brain ; 144(4): 1197-1213, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33889941

RESUMO

The CADM family of proteins consists of four neuronal specific adhesion molecules (CADM1, CADM2, CADM3 and CADM4) that mediate the direct contact and interaction between axons and glia. In the peripheral nerve, axon-Schwann cell interaction is essential for the structural organization of myelinated fibres and is primarily mediated by the binding of CADM3, expressed in axons, to CADM4, expressed by myelinating Schwann cells. We have identified-by whole exome sequencing-three unrelated families, including one de novo patient, with axonal Charcot-Marie-Tooth disease (CMT2) sharing the same private variant in CADM3, Tyr172Cys. This variant is absent in 230 000 control chromosomes from gnomAD and predicted to be pathogenic. Most CADM3 patients share a similar phenotype consisting of autosomal dominant CMT2 with marked upper limb involvement. High resolution mass spectrometry analysis detected a newly created disulphide bond in the mutant CADM3 potentially modifying the native protein conformation. Our data support a retention of the mutant protein in the endoplasmic reticulum and reduced cell surface expression in vitro. Stochastic optical reconstruction microscopy imaging revealed decreased co-localization of the mutant with CADM4 at intercellular contact sites. Mice carrying the corresponding human mutation (Cadm3Y170C) showed reduced expression of the mutant protein in axons. Cadm3Y170C mice showed normal nerve conduction and myelin morphology, but exhibited abnormal axonal organization, including abnormal distribution of Kv1.2 channels and Caspr along myelinated axons. Our findings indicate the involvement of abnormal axon-glia interaction as a disease-causing mechanism in CMT patients with CADM3 mutations.


Assuntos
Moléculas de Adesão Celular/genética , Doença de Charcot-Marie-Tooth/genética , Imunoglobulinas/genética , Adulto , Axônios/patologia , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neuroglia/patologia , Linhagem , Fenótipo
4.
Int J Mol Sci ; 21(13)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635462

RESUMO

The loss of skeletal muscle mass under a wide range of acute and chronic maladies is associated with poor prognosis, reduced quality of life, and increased mortality. Decades of research indicate the importance of skeletal muscle for whole body metabolism, glucose homeostasis, as well as overall health and wellbeing. This tissue's remarkable ability to rapidly and effectively adapt to changing environmental cues is a double-edged sword. Physiological adaptations that are beneficial throughout life become maladaptive during atrophic conditions. The atrophic program can be activated by mechanical, oxidative, and energetic distress, and is influenced by the availability of nutrients, growth factors, and cytokines. Largely governed by a transcription-dependent mechanism, this program impinges on multiple protein networks including various organelles as well as biosynthetic and quality control systems. Although modulating muscle function to prevent and treat disease is an enticing concept that has intrigued research teams for decades, a lack of thorough understanding of the molecular mechanisms and signaling pathways that control muscle mass, in addition to poor transferability of findings from rodents to humans, has obstructed efforts to develop effective treatments. Here, we review the progress made in unraveling the molecular mechanisms responsible for the regulation of muscle mass, as this continues to be an intensive area of research.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Transdução de Sinais/fisiologia , Animais , Citocinas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Nutrientes/metabolismo , Qualidade de Vida
6.
Am J Physiol Cell Physiol ; 308(9): C710-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25673772

RESUMO

Regular exercise leads to systemic metabolic benefits, which require remodeling of energy resources in skeletal muscle. During acute exercise, the increase in energy demands initiate mitochondrial biogenesis, orchestrated by the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Much less is known about the degradation of mitochondria following exercise, although new evidence implicates a cellular recycling mechanism, autophagy/mitophagy, in exercise-induced adaptations. How mitophagy is activated and what role PGC-1α plays in this process during exercise have yet to be evaluated. Thus we investigated autophagy/mitophagy in muscle immediately following an acute bout of exercise or 90 min following exercise in wild-type (WT) and PGC-1α knockout (KO) animals. Deletion of PGC-1α resulted in a 40% decrease in mitochondrial content, as well as a 25% decline in running performance, which was accompanied by severe acidosis in KO animals, indicating metabolic distress. Exercise induced significant increases in gene transcripts of various mitochondrial (e.g., cytochrome oxidase subunit IV and mitochondrial transcription factor A) and autophagy-related (e.g., p62 and light chain 3) genes in WT, but not KO, animals. Exercise also resulted in enhanced targeting of mitochondria for mitophagy, as well as increased autophagy and mitophagy flux, in WT animals. This effect was attenuated in the absence of PGC-1α. We also identified Niemann-Pick C1, a transmembrane protein involved in lysosomal lipid trafficking, as a target of PGC-1α that is induced with exercise. These results suggest that mitochondrial turnover is increased following exercise and that this effect is at least in part coordinated by PGC-1α.


Assuntos
Autofagia , Mitocôndrias Musculares/metabolismo , Mitofagia , Contração Muscular , Músculo Esquelético/metabolismo , Esforço Físico , Fatores de Transcrição/metabolismo , Acidose/etiologia , Acidose/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biomarcadores/sangue , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Ácido Láctico/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Proteína C1 de Niemann-Pick , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
7.
Am J Physiol Cell Physiol ; 304(5): C422-30, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23220115

RESUMO

Aging muscle exhibits a progressive decline in mass and strength, known as sarcopenia, and a decrease in the adaptive response to contractile activity. The molecular mechanisms mediating this reduced plasticity have yet to be elucidated. The purposes of this study were 1) to determine whether denervation-induced muscle disuse would increase the expression of autophagy genes and 2) to examine whether selective autophagy pathways (mitophagy) are altered in aged animals. Denervation reduced muscle mass in young and aged animals by 24 and 16%, respectively. Moreover, young animals showed a 50% decrease in mitochondrial content following denervation, an adaptation that was not matched by aged animals. Basal autophagy protein expression was higher in aged animals, whereas young animals exhibited a greater induction of autophagy proteins following denervation. Localization of LC3II, Parkin, and p62 was significantly increased in the mitochondrial fraction of young and aged animals following denervation. Moreover, the unfolded protein response marker CHOP and the mitochondrial dynamics protein Fis1 were increased by 17- and 2.5-fold, respectively, in aged animals. Lipofuscin granules within lysosomes were evident with aging and denervation. Thus reductions in the adaptive plasticity of aged muscle are associated with decreases in disuse-induced autophagy. These data indicate that the expression of autophagy proteins and their localization to mitochondria are not decreased in aged muscle; however, the induction of autophagy in response to disuse, along with downstream events such as lysosome function, is impaired. This may contribute to an accumulation of dysfunctional mitochondria in aged muscle.


Assuntos
Autofagia/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Fatores Etários , Animais , Lipofuscina/genética , Lipofuscina/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Denervação Muscular/métodos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Ratos , Ratos Endogâmicos F344 , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Am J Physiol Cell Physiol ; 303(4): C447-54, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22673615

RESUMO

Skeletal muscle undergoes remarkable adaptations in response to chronic decreases in contractile activity, such as a loss of muscle mass, decreases in both mitochondrial content and function, as well as the activation of apoptosis. Although these adaptations are well known, questions remain regarding the signaling pathways that mediated these changes. Autophagy is an organelle turnover pathway that could contribute to these adaptations. The purpose of this study was to determine whether denervation-induced muscle disuse would result in the activation of autophagy gene expression in both wild-type (WT) and Bax/Bak double knockout (DKO) animals, which display an attenuated apoptotic response. Denervation caused a reduction in muscle mass for WT and DKO animals; however, there was a 40% attenuation in muscle atrophy in DKO animals. Mitochondrial state 3 respiration was significantly reduced, and reactive oxygen species production was increased by two- to threefold in both WT and DKO animals. Apoptotic markers, including cytosolic AIF and DNA fragmentation, were elevated in WT, but not in DKO animals following denervation. Autophagy proteins including LC3II, ULK1, ATG7, p62, and Beclin1 were increased similarly following denervation for both WT and DKO. Interestingly, denervation markedly increased the localization of LC3II to subsarcolemmal mitochondria, and this was more pronounced in the DKO animals. Thus denervation-induced muscle disuse activates both apoptotic and autophagic signaling pathways in muscle, and autophagic protein expression does not exhibit a compensatory increase in the presence of attenuated apoptosis. However, the absence of Bax and Bak may represent a potential signal to trigger mitophagy in muscle.


Assuntos
Autofagia/fisiologia , Denervação Muscular , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose/fisiologia , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular/patologia , Transtornos Musculares Atróficos/patologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
9.
J Appl Physiol (1985) ; 133(6): 1381-1393, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356257

RESUMO

Exercise is one of the only nonpharmacological remedies known to counteract genetic and chronic diseases by enhancing health and improving life span. Although the many benefits of regular physical activity have been recognized for some time, the intricate and complex signaling systems triggered at the onset of exercise have only recently begun to be uncovered. Exercising muscles initiate a coordinated, multisystemic, metabolic rewiring, which is communicated to distant organs by various molecular mediators. The field of exercise research has been expanding beyond the musculoskeletal system, with interest from industry to provide realistic models and exercise mimetics that evoke a whole body rejuvenation response. The 18th International Biochemistry of Exercise conference took place in Toronto, Canada, from May 25 to May 28, 2022, with more than 400 attendees. Here, we provide an overview of the most cutting-edge exercise-related research presented by 66 speakers, focusing on new developments in topics ranging from molecular and cellular mechanisms of exercise adaptations to exercise therapy and management of disease and aging. We also describe how the manipulation of these signaling pathways can uncover therapeutic avenues for improving human health and quality of life.


Assuntos
Exercício Físico , Qualidade de Vida , Humanos , Exercício Físico/fisiologia , Adaptação Fisiológica , Envelhecimento/fisiologia , Terapia por Exercício , Músculo Esquelético/metabolismo
10.
Elife ; 102021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33689679

RESUMO

TDP-43 is extensively studied in neurons in physiological and pathological contexts. However, emerging evidence indicates that glial cells are also reliant on TDP-43 function. We demonstrate that deletion of TDP-43 in Schwann cells results in a dramatic delay in peripheral nerve conduction causing significant motor deficits in mice, which is directly attributed to the absence of paranodal axoglial junctions. By contrast, paranodes in the central nervous system are unaltered in oligodendrocytes lacking TDP-43. Mechanistically, TDP-43 binds directly to Neurofascin mRNA, encoding the cell adhesion molecule essential for paranode assembly and maintenance. Loss of TDP-43 triggers the retention of a previously unidentified cryptic exon, which targets Neurofascin mRNA for nonsense-mediated decay. Thus, TDP-43 is required for neurofascin expression, proper assembly and maintenance of paranodes, and rapid saltatory conduction. Our findings provide a framework and mechanism for how Schwann cell-autonomous dysfunction in nerve conduction is directly caused by TDP-43 loss-of-function.


Assuntos
Proteínas de Ligação a DNA/genética , Éxons , Junções Intercelulares/metabolismo , Condução Nervosa , Células de Schwann/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Masculino , Camundongos
11.
Cells ; 9(11)2020 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114389

RESUMO

Autophagy, a bulk degradation process within eukaryotic cells, is responsible for cellular turnover and nutrient liberation during starvation. Increasing evidence indicate that this process can be extremely discerning. Selective autophagy segregates and eliminates protein aggregates, damaged organelles, and invading organisms. The specificity of this process is largely mediated by post-translational modifications (PTMs), which are recognized by autophagy receptors. These receptors grant autophagy surgical precision in cargo selection, where only tagged substrates are engulfed within autophagosomes and delivered to the lysosome for proteolytic breakdown. A growing number of selective autophagy receptors have emerged including p62, NBR1, OPTN, NDP52, TAX1BP1, TOLLIP, and more continue to be uncovered. The most well-documented PTM is ubiquitination and selective autophagy receptors are equipped with a ubiquitin binding domain and an LC3 interacting region which allows them to physically bridge cargo to autophagosomes. Here, we review the role of ubiquitin and ubiquitin-like post-translational modifications in various types of selective autophagy.


Assuntos
Autofagia , Ubiquitina/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagossomos/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitofagia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Ubiquitinação
12.
Neuron ; 106(5): 806-815.e6, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32209430

RESUMO

During development of the peripheral nervous system (PNS), Schwann-cell-secreted gliomedin induces the clustering of Na+ channels at the edges of each myelin segment to form nodes of Ranvier. Here we show that bone morphogenetic protein-1 (BMP1)/Tolloid (TLD)-like proteinases confine Na+ channel clustering to these sites by negatively regulating the activity of gliomedin. Eliminating the Bmp1/TLD cleavage site in gliomedin or treating myelinating cultures with a Bmp1/TLD inhibitor results in the formation of numerous ectopic Na+ channel clusters along axons that are devoid of myelin segments. Furthermore, genetic deletion of Bmp1 and Tll1 genes in mice using a Schwann-cell-specific Cre causes ectopic clustering of nodal proteins, premature formation of heminodes around early ensheathing Schwann cells, and altered nerve conduction during development. Our results demonstrate that by inactivating gliomedin, Bmp1/TLD functions as an additional regulatory mechanism to ensure the correct spatial and temporal assembly of PNS nodes of Ranvier.


Assuntos
Proteína Morfogenética Óssea 1/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Bainha de Mielina/metabolismo , Nós Neurofibrosos/metabolismo , Metaloproteases Semelhantes a Toloide/genética , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Proteína Morfogenética Óssea 1/metabolismo , Camundongos , Camundongos Knockout , Condução Nervosa , Sistema Nervoso Periférico , Transporte Proteico , Células de Schwann/metabolismo , Metaloproteases Semelhantes a Toloide/metabolismo
13.
Mol Genet Genomic Med ; 7(12): e859, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568712

RESUMO

BACKGROUND: One of the most important steps taken by Beyond Batten Disease Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the State of the Science. We believe that a strong understanding of where we are in our experimental understanding of the CLN3 gene, its regulation, gene product, protein structure, tissue distribution, biomarker use, and pathological responses to its deficiency, lays the groundwork for determining therapeutic action plans. OBJECTIVES: To present an unbiased comprehensive reference tool of the experimental understanding of the CLN3 gene and gene product of the same name. METHODS: BBDF compiled all of the available CLN3 gene and protein data from biological databases, repositories of federally and privately funded projects, patent and trademark offices, science and technology journals, industrial drug and pipeline reports as well as clinical trial reports and with painstaking precision, validated the information together with experts in Batten disease, lysosomal storage disease, lysosome/endosome biology. RESULTS: The finished product is an indexed review of the CLN3 gene and protein which is not limited in page size or number of references, references all available primary experiments, and does not draw conclusions for the reader. CONCLUSIONS: Revisiting the experimental history of a target gene and its product ensures that inaccuracies and contradictions come to light, long-held beliefs and assumptions continue to be challenged, and information that was previously deemed inconsequential gets a second look. Compiling the information into one manuscript with all appropriate primary references provides quick clues to which studies have been completed under which conditions and what information has been reported. This compendium does not seek to replace original articles or subtopic reviews but provides an historical roadmap to completed works.


Assuntos
Doenças por Armazenamento dos Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Lisossomos/metabolismo , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Distribuição Tecidual
14.
Elife ; 62017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29168692

RESUMO

Treatment for medulloblastoma, the most common malignant brain tumor in children, remains limited to surgical resection, radiation, and traditional chemotherapy; with long-term survival as low as 50-60% for Sonic Hedgehog (Shh)-type medulloblastoma. We have shown that the transcription factor Atonal homologue 1 (Atoh1) is required for Shh-type medulloblastoma development in mice. To determine whether reducing either Atoh1 levels or activity in tumors after their development is beneficial, we studied Atoh1 dosage and modifications in Shh-type medulloblastoma. Heterozygosity of Atoh1 reduced tumor occurrence and prolonged survival. We discovered tyrosine 78 of Atoh1 is phosphorylated by a Jak2-mediated pathway only in tumor-initiating cells and in human SHH-type medulloblastoma. Phosphorylation of tyrosine 78 stabilizes Atoh1, increases Atoh1's transcriptional activity, and is independent of canonical Jak2 signaling. Importantly, inhibition of Jak2 impairs tyrosine 78 phosphorylation and tumor growth in vivo. Taken together, inhibiting Jak2-mediated tyrosine 78 phosphorylation could provide a viable therapy for medulloblastoma.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinogênese , Janus Quinase 2/metabolismo , Meduloblastoma/patologia , Meduloblastoma/fisiopatologia , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Fosforilação
15.
EMBO Mol Med ; 9(5): 605-621, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28283651

RESUMO

TFE3 and TFEB are members of the MiT family of HLH-leucine zipper transcription factors. Recent studies demonstrated that they bind overlapping sets of promoters and are post-transcriptionally regulated through a similar mechanism. However, while Tcfeb knockout (KO) mice die during early embryonic development, no apparent phenotype was reported in Tfe3 KO mice. Thus raising the need to characterize the physiological role of TFE3 and elucidate its relationship with TFEB TFE3 deficiency resulted in altered mitochondrial morphology and function both in vitro and in vivo due to compromised mitochondrial dynamics. In addition, Tfe3 KO mice showed significant abnormalities in energy balance and alterations in systemic glucose and lipid metabolism, resulting in enhanced diet-induced obesity and diabetes. Conversely, viral-mediated TFE3 overexpression improved the metabolic abnormalities induced by high-fat diet (HFD). Both TFEB overexpression in Tfe3 KO mice and TFE3 overexpression in Tcfeb liver-specific KO mice (Tcfeb LiKO) rescued HFD-induced obesity, indicating that TFEB can compensate for TFE3 deficiency and vice versa Analysis of Tcfeb LiKO/Tfe3 double KO mice demonstrated that depletion of both TFE3 and TFEB results in additive effects with an exacerbation of the hepatic phenotype. These data indicate that TFE3 and TFEB play a cooperative, rather than redundant, role in the control of the adaptive response of whole-body metabolism to environmental cues such as diet and physical exercise.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Metabolismo Energético , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dinâmica Mitocondrial , Condicionamento Físico Animal , Regulação para Cima
16.
Elife ; 62017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134616

RESUMO

A high density of Na+ channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na+ channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na+ channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na+ channels requires axonal ßII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na+channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton.


Assuntos
Citoesqueleto/metabolismo , Nós Neurofibrosos/química , Canais de Sódio/análise , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Camundongos Knockout
17.
J Appl Physiol (1985) ; 120(6): 664-73, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26679612

RESUMO

The merits of exercise on muscle health and well-being are numerous and well documented. However, the mechanisms underlying the robust adaptations induced by exercise, particularly on mitochondria, are less clear and much sought after. Recently, an evolutionary conserved cellular recycling mechanism known as autophagy has been implicated in the adaptations to acute and chronic exercise. A basal level of autophagy is constantly ongoing in cells and tissues, ensuring cellular clearance and energy homeostasis. This pathway can be further induced, as a survival mechanism, by cellular perturbations, such as energetic imbalance and oxidative stress. During exercise, a biphasic autophagy response is mobilized, leading to both an acute induction and a long-term potentiation of the process. Posttranslational modifications arising from upstream signaling cascades induce an acute autophagic response during a single bout of exercise by mobilizing core autophagy machinery. A transcriptional program involving the regulators Forkhead box O, transcription factor EB, p53, and peroxisome proliferator coactivator-1α is also induced to fuel sustained increases in autophagic capacity. Autophagy has also been documented to mediate chronic exercise-induced metabolic benefits, and animal models in which autophagy is perturbed do not adapt to exercise to the same extent. In this review, we discuss recent developments in the field of autophagy and exercise. We specifically highlight the molecular mechanisms activated during acute exercise that lead to a prolonged adaptive response.


Assuntos
Autofagia/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Humanos , Músculo Esquelético/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Fatores de Transcrição/metabolismo
18.
Nat Commun ; 7: 10884, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26961174

RESUMO

While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes.


Assuntos
Diferenciação Celular/genética , Sistema Nervoso Central/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oligodendroglia/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Quinases raf/metabolismo
19.
Skelet Muscle ; 5: 9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25834726

RESUMO

BACKGROUND: Alterations in skeletal muscle contractile activity necessitate an efficient remodeling mechanism. In particular, mitochondrial turnover is essential for tissue homeostasis during muscle adaptations to chronic use and disuse. While mitochondrial biogenesis appears to be largely governed by the transcriptional co-activator peroxisome proliferator co-activator 1 alpha (PGC-1α), selective mitochondrial autophagy (mitophagy) is thought to mediate organelle degradation. However, whether PGC-1α plays a direct role in autophagy is currently unclear. METHODS: To investigate the role of the co-activator in autophagy and mitophagy during skeletal muscle remodeling, PGC-1α knockout (KO) and overexpressing (Tg) animals were unilaterally denervated, a common model of chronic muscle disuse. RESULTS: Animals lacking PGC-1α exhibited diminished mitochondrial density alongside myopathic characteristics reminiscent of autophagy-deficient muscle. Denervation promoted an induction in autophagy and lysosomal protein expression in wild-type (WT) animals, which was partially attenuated in KO animals, resulting in reduced autophagy and mitophagy flux. PGC-1α overexpression led to an increase in lysosomal capacity as well as indicators of autophagy flux but exhibited reduced localization of LC3II and p62 to mitochondria, compared to WT animals. A correlation was observed between the levels of the autophagy-lysosome master regulator transcription factor EB (TFEB) and PGC-1α in muscle, supporting their coordinated regulation. CONCLUSIONS: Our investigation has uncovered a regulatory role for PGC-1α in mitochondrial turnover, not only through biogenesis but also via degradation using the autophagy-lysosome machinery. This implies a PGC-1α-mediated cross-talk between these two opposing processes, working to ensure mitochondrial homeostasis during muscle adaptation to chronic disuse.

20.
Prog Mol Biol Transl Sci ; 135: 99-127, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26477912

RESUMO

Exercise is a well-known stimulus for the expansion of the mitochondrial pool within skeletal muscle. Mitochondria have a remarkable ability to remodel their networks and can respond to an array of signaling stimuli following contractile activity to adapt to the metabolic demands of the tissue, synthesizing proteins to expand the mitochondrial reticulum. In addition, when they become dysfunctional, these organelles can be recycled by a specialized intracellular system. The signals regulating this mitochondrial life cycle of synthesis and degradation during exercise are still an area of great research interest. As mitochondrial turnover has valuable consequences in physical performance, in addition to metabolic health, disease, and aging, consideration of the signals which control this cycle is vital. This review focuses on the regulation of mitochondrial turnover in skeletal muscle and summarizes our current understanding of the impact that exercise has in modulating this process.


Assuntos
Exercício Físico , Dinâmica Mitocondrial , Envelhecimento/metabolismo , Animais , DNA Mitocondrial/metabolismo , Humanos , Músculo Esquelético/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA