Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 309(11): H1837-45, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26453330

RESUMO

Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of cognitive impairment associated with aging and pathological conditions associated with accelerated cerebromicrovascular aging (e.g., hypertension, obesity). Although previous studies demonstrate that endothelial dysfunction plays a critical role in neurovascular uncoupling in these conditions, the role of endothelial NO mediation in neurovascular coupling responses is not well understood. To establish the link between endothelial function and functional hyperemia, neurovascular coupling responses were studied in mutant mice overexpressing or deficient in endothelial NO synthase (eNOS), and the role of P2Y1 receptors in purinergic glioendothelial coupling was assessed. We found that genetic depletion of eNOS (eNOS(-/-)) and pharmacological inhibition of NO synthesis significantly decreased the CBF responses in the somatosensory cortex evoked by whisker stimulation and by administration of ATP. Overexpression of eNOS enhanced NO mediation of functional hyperemia. In control mice, the selective and potent P2Y1 receptor antagonist MRS2179 attenuated both whisker stimulation-induced and ATP-mediated CBF responses, whereas, in eNOS(-/-) mice, the inhibitory effects of MRS2179 were blunted. Collectively, our findings provide additional evidence for purinergic glio-endothelial coupling during neuronal activity, highlighting the role of ATP-mediated activation of eNOS via P2Y1 receptors in functional hyperemia.


Assuntos
Astrócitos/enzimologia , Comunicação Celular , Células Endoteliais/enzimologia , Hiperemia/enzimologia , Microcirculação , Acoplamento Neurovascular , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Córtex Somatossensorial/enzimologia , Animais , Comunicação Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hemodinâmica , Homeostase , Hiperemia/genética , Hiperemia/fisiopatologia , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação/efeitos dos fármacos , Acoplamento Neurovascular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Agonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiopatologia , Vibrissas/inervação
2.
J Cereb Blood Flow Metab ; 41(10): 2475-2491, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33757314

RESUMO

Ischemic strokes are highly prevalent in the elderly population and are a leading cause of mortality and morbidity worldwide. The risk of ischemic stroke increases in advanced age, corresponding with a noted decrease in circulating insulin growth factor-1 (IGF-1). IGF-1 is a known neuroprotectant involved in embryonic development, neurogenesis, neurotransmission, cognition, and lifespan. Clinically, several studies have shown that reduced levels of IGF-1 correlate with increased mortality rate, poorer functional outcomes, and increased morbidities following an ischemic stroke. In animal models of ischemia, administering exogenous IGF-1 using various routes of administration (intranasal, intravenous, subcutaneous, or topical) at various time points prior to and following insult attenuates neurological damage and accompanying behavioral changes caused by ischemia. However, there are some contrasting findings in select clinical and preclinical studies. This review discusses the role of IGF-1 as a determinant factor of ischemic stroke outcomes, both within the clinical settings and preclinical animal models. Furthermore, the review provides insight on the role of IGF-1 in mechanisms and cellular processes that contribute to stroke damage.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , AVC Isquêmico/terapia , Humanos , Prognóstico
3.
J Gerontol A Biol Sci Med Sci ; 73(7): 853-863, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29905772

RESUMO

Obesity has deleterious effects on cognitive function in the elderly adults. In mice, aging exacerbates obesity-induced oxidative stress, microvascular dysfunction, blood-brain barrier (BBB) disruption, and neuroinflammation, which compromise cognitive health. However, the specific mechanisms through which aging and obesity interact to remain elusive. Previously, we have shown that Nrf2 signaling plays a critical role in microvascular resilience to obesity and that aging is associated with progressive Nrf2 dysfunction, promoting microvascular impairment. To test the hypothesis that Nrf2 deficiency exacerbates cerebromicrovascular dysfunction induced by obesity Nrf2+/+ and Nrf2-/-, mice were fed an adipogenic high-fat diet (HFD). Nrf2 deficiency significantly exacerbated HFD-induced oxidative stress and cellular senescence, impairment of neurovascular coupling responses, BBB disruption, and microglia activation, mimicking the aging phenotype. Obesity in Nrf2-/- mice elicited complex alterations in the amyloidogenic gene expression profile, including upregulation of amyloid precursor protein. Nrf2 deficiency and obesity additively reduced long-term potentiation in the CA1 area of the hippocampus. Collectively, Nrf2 dysfunction exacerbates the deleterious effects of obesity, compromising cerebromicrovascular and brain health by impairing neurovascular coupling mechanisms, BBB integrity and synaptic function and promoting neuroinflammation. These results support a possible role for age-related Nrf2 dysfunction in the pathogenesis of vascular cognitive impairment and Alzheimer's disease.


Assuntos
Envelhecimento/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Obesidade/metabolismo , Envelhecimento/genética , Envelhecimento/psicologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/genética , Animais , Barreira Hematoencefálica/fisiopatologia , Disfunção Cognitiva/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Expressão Gênica , Hipocampo/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/fisiologia , Plasticidade Neuronal , Obesidade/fisiopatologia , Estresse Oxidativo , Fenótipo
4.
Geroscience ; 39(4): 359-372, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28853030

RESUMO

Hypertension in the elderly substantially increases both the risk of vascular cognitive impairment (VCI) and Alzheimer's disease (AD); however, the underlying mechanisms are not completely understood. This review discusses the effects of hypertension on structural and functional integrity of cerebral microcirculation, including hypertension-induced alterations in neurovascular coupling responses, cellular and molecular mechanisms involved in microvascular damage (capillary rarefaction, blood-brain barrier disruption), and the genesis of cerebral microhemorrhages and their potential role in exacerbation of cognitive decline associated with AD. Understanding and targeting the hypertension-induced cerebromicrovascular alterations that are involved in the onset and progression of AD and contribute to cognitive impairment are expected to have a major role in preserving brain health in high-risk older individuals.

5.
Geroscience ; 39(1): 33-42, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28299642

RESUMO

Whole brain irradiation (WBI) is a mainstream therapy for patients with both identifiable brain metastases and prophylaxis for microscopic malignancies. However, it also promotes accelerated senescence in healthy tissues and leads to progressive cognitive dysfunction in up to 50% of tumor patients surviving long term after treatment, due to γ-irradiation-induced cerebromicrovascular injury. Moment-to-moment adjustment of cerebral blood flow (CBF) via neuronal activity-dependent cerebromicrovascular dilation (functional hyperemia) has a critical role in maintenance of healthy cognitive function. To determine whether cognitive decline induced by WBI associates with impaired cerebromicrovascular function, C56BL/6 mice (3 months) subjected to a clinically relevant protocol of fractionated WBI (5 Gy twice weekly for 4 weeks) and control mice were compared. Mice were tested for spatial memory performance (radial arm water maze), sensorimotor coordination (computerized gait analysis, CatWalk), and cerebromicrovascular function (whisker-stimulation-induced increases in CBF, measured by laser Doppler flowmetry) at 3 to 6 months post-irradiation. We found that mice with WBI exhibited impaired cerebromicrovascular function at 3 months post-irradiation, which was associated with impaired performance in the radial arm water maze. At 6 months, post-irradiation progressive impairment in gait coordination (including changes in the regularity index and phase dispersion) was also evident. Collectively, our findings provide evidence for early and persisting neurovascular impairment after a clinically relevant protocol of fractionated WBI, which predict early manifestations of cognitive impairment.


Assuntos
Encéfalo/efeitos da radiação , Circulação Cerebrovascular/fisiologia , Disfunção Cognitiva/patologia , Coxeadura Animal/fisiopatologia , Lesões Experimentais por Radiação/complicações , Animais , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Fracionamento da Dose de Radiação , Coxeadura Animal/etiologia , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Acoplamento Neurovascular , Distribuição Aleatória , Valores de Referência , Fatores de Tempo
6.
Geroscience ; 39(5-6): 601-614, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29243191

RESUMO

There is correlative evidence that impaired cerebral blood flow (CBF) regulation, in addition to promoting cognitive impairment, is also associated with alterations in gait and development of falls in elderly people. CBF is adjusted to neuronal activity via neurovascular coupling (NVC) and this mechanism becomes progressively impaired with age. To establish a direct cause-and-effect relationship between impaired NVC and gait abnormalities, we induced neurovascular uncoupling pharmacologically in young C57BL/6 mice by inhibiting the synthesis of vasodilator mediators involved in NVC. Treatment of mice with the epoxygenase inhibitor MSPPOH, the NO synthase inhibitor L-NAME, and the COX inhibitor indomethacin significantly decreased NVC mimicking the aging phenotype. Pharmacologically induced neurovascular uncoupling significantly decreased the dynamic gait parameter duty cycle, altered footfall patterns, and significantly increased phase dispersion, indicating impaired interlimb coordination. Impaired NVC also tended to increase gait variability. Thus, selective experimental disruption of NVC causes subclinical gait abnormalities, supporting the importance of CBF in both cognitive function and gait regulation.


Assuntos
Transtornos Cognitivos/induzido quimicamente , Marcha/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Acoplamento Neurovascular/efeitos dos fármacos , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Indometacina/farmacologia , Coxeadura Animal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Distribuição Aleatória , Sensibilidade e Especificidade
7.
Age (Dordr) ; 38(4): 239-258, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27566308

RESUMO

Epidemiological findings support the concept of Developmental Origins of Health and Disease, suggesting that early-life hormonal influences during a sensitive period of development have a fundamental impact on vascular health later in life. The endocrine changes that occur during development are highly conserved across mammalian species and include dramatic increases in circulating IGF-1 levels during adolescence. The present study was designed to characterize the effect of developmental IGF-1 deficiency on the vascular aging phenotype. To achieve that goal, early-onset endocrine IGF-1 deficiency was induced in mice by knockdown of IGF-1 in the liver using Cre-lox technology (Igf1 f/f mice crossed with mice expressing albumin-driven Cre recombinase). This model exhibits low-circulating IGF-1 levels during the peripubertal phase of development, which is critical for the biology of aging. Due to the emergence of miRNAs as important regulators of the vascular aging phenotype, the effect of early-life IGF-1 deficiency on miRNA expression profile in the aorta was examined in animals at 27 months of age. We found that developmental IGF-1 deficiency elicits persisting late-life changes in miRNA expression in the vasculature, which significantly differed from those in mice with adult-onset IGF-1 deficiency (TBG-Cre-AAV8-mediated knockdown of IGF-1 at 5 month of age in Igf1 f/f mice). Using a novel computational approach, we identified miRNA target genes that are co-expressed with IGF-1 and associate with aging and vascular pathophysiology. We found that among the predicted targets, the expression of multiple extracellular matrix-related genes, including collagen-encoding genes, were downregulated in mice with developmental IGF-1 deficiency. Collectively, IGF-1 deficiency during a critical period during early in life results in persistent changes in post-transcriptional miRNA-mediated control of genes critical targets for vascular health, which likely contribute to the deleterious late-life cardiovascular effects known to occur with developmental IGF-1 deficiency.


Assuntos
Envelhecimento/fisiologia , Aorta/fisiologia , Regulação da Expressão Gênica/fisiologia , Fator de Crescimento Insulin-Like I/deficiência , MicroRNAs/metabolismo , Análise de Variância , Animais , Regulação para Baixo , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like I/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Estresse Oxidativo/fisiologia , Transcrição Gênica
8.
Age (Dordr) ; 38(4): 273-289, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27613724

RESUMO

Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f  + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased blood-brain barrier disruption and neuroinflammation reported in previous studies likely contribute to the pathogenesis of vascular cognitive impairment in elderly hypertensive humans.


Assuntos
Envelhecimento/metabolismo , Hipocampo/irrigação sanguínea , Hipertensão/complicações , Fator de Crescimento Insulin-Like I/deficiência , Rarefação Microvascular/patologia , Neocórtex/irrigação sanguínea , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Animais , Biomarcadores/sangue , Barreira Hematoencefálica/metabolismo , Disfunção Cognitiva/fisiopatologia , Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rarefação Microvascular/etiologia , RNA Mensageiro/metabolismo
9.
J Cereb Blood Flow Metab ; 35(11): 1871-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26174328

RESUMO

There is increasing evidence that vascular risk factors, including aging, hypertension, diabetes mellitus, and obesity, promote cognitive impairment; however, the underlying mechanisms remain obscure. Cerebral blood flow (CBF) is adjusted to neuronal activity via neurovascular coupling (NVC) and this mechanism is known to be impaired in the aforementioned pathophysiologic conditions. To establish a direct relationship between impaired NVC and cognitive decline, we induced neurovascular uncoupling pharmacologically in mice by inhibiting the synthesis of vasodilator mediators involved in NVC. Treatment of mice with the epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MSPPOH), the NO synthase inhibitor l-NG-Nitroarginine methyl ester (L-NAME), and the COX inhibitor indomethacin decreased NVC by over 60% mimicking the aging phenotype, which was associated with significantly impaired spatial working memory (Y-maze), recognition memory (Novel object recognition), and impairment in motor coordination (Rotarod). Blood pressure (tail cuff) and basal cerebral perfusion (arterial spin labeling perfusion MRI) were unaffected. Thus, selective experimental disruption of NVC is associated with significant impairment of cognitive and sensorimotor function, recapitulating neurologic symptoms and signs observed in brain aging and pathophysiologic conditions associated with accelerated cerebromicrovascular aging.


Assuntos
Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/psicologia , Acoplamento Neurovascular/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Marcha/efeitos dos fármacos , Força da Mão , Indometacina/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Equilíbrio Postural/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos
10.
J Gerontol A Biol Sci Med Sci ; 68(8): 877-91, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23239824

RESUMO

Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and development of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young (3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 expression was increased by treatment with polyethylene glycol-catalase. Compared with young cells, aged CMVECs exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired proliferation, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging.


Assuntos
Envelhecimento/genética , Encéfalo/irrigação sanguínea , RNA Helicases DEAD-box/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Fisiológica/genética , Ribonuclease III/metabolismo , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Adesão Celular , Proliferação de Células , Células Cultivadas , RNA Helicases DEAD-box/genética , Regulação para Baixo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Técnicas de Silenciamento de Genes , Masculino , Microvasos/metabolismo , Microvasos/patologia , Estresse Oxidativo , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Ribonuclease III/antagonistas & inibidores , Ribonuclease III/genética
11.
J Gerontol A Biol Sci Med Sci ; 67(8): 821-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22219515

RESUMO

The redox-sensitive transcription factor NF-E2-related factor 2 (Nrf2) plays a key role in preserving a healthy endothelial phenotype and maintaining the functional integrity of the vasculature. Previous studies demonstrated that aging is associated with Nrf2 dysfunction in endothelial cells, which alters redox signaling and likely promotes the development of large vessel disease. Much less is known about the consequences of Nrf2 dysfunction at the level of the microcirculation. To test the hypothesis that Nrf2 regulates angiogenic capacity of endothelial cells, we determined whether disruption of Nrf2 signaling (by siRNA knockdown of Nrf2 and overexpression of Keap1, the cytosolic repressor of Nrf2) impairs angiogenic processes in cultured human coronary arterial endothelial cells stimulated with vascular endothelial growth factor and insulin-like growth factor-1. In the absence of functional Nrf2, coronary arterial endothelial cells exhibited impaired proliferation and adhesion to vitronectin and collagen. Disruption of Nrf2 signaling also reduced cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology) and impaired the ability of coronary arterial endothelial cells to form capillary-like structures. Collectively, we find that Nrf2 is essential for normal endothelial angiogenic processes, suggesting that Nrf2 dysfunction may be a potential mechanism underlying impaired angiogenesis and microvascular rarefaction in aging.


Assuntos
Senescência Celular/fisiologia , Vasos Coronários/citologia , Células Endoteliais/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Apoptose/fisiologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células , Proteínas da Matriz Extracelular/fisiologia , Humanos , Microcirculação/fisiologia , Neovascularização Fisiológica , Estresse Oxidativo/fisiologia
12.
J Gerontol A Biol Sci Med Sci ; 67(4): 313-29, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22021391

RESUMO

Recent studies demonstrate that age-related dysfunction of NF-E2-related factor-2 (Nrf2)-driven pathways impairs cellular redox homeostasis, exacerbating age-related cellular oxidative stress and increasing sensitivity of aged vessels to oxidative stress-induced cellular damage. Circulating levels of insulin-like growth factor (IGF)-1 decline during aging, which significantly increases the risk for cardiovascular diseases in humans. To test the hypothesis that adult-onset IGF-1 deficiency impairs Nrf2-driven pathways in the vasculature, we utilized a novel mouse model with a liver-specific adeno-associated viral knockdown of the Igf1 gene using Cre-lox technology (Igf1(f/f) + MUP-iCre-AAV8), which exhibits a significant decrease in circulating IGF-1 levels (~50%). In the aortas of IGF-1-deficient mice, there was a trend for decreased expression of Nrf2 and the Nrf2 target genes GCLC, NQO1 and HMOX1. In cultured aorta segments of IGF-1-deficient mice treated with oxidative stressors (high glucose, oxidized low-density lipoprotein, and H(2)O(2)), induction of Nrf2-driven genes was significantly attenuated as compared with control vessels, which was associated with an exacerbation of endothelial dysfunction, increased oxidative stress, and apoptosis, mimicking the aging phenotype. In conclusion, endocrine IGF-1 deficiency is associated with dysregulation of Nrf2-dependent antioxidant responses in the vasculature, which likely promotes an adverse vascular phenotype under pathophysiological conditions associated with oxidative stress (eg, diabetes mellitus, hypertension) and results in accelerated vascular impairments in aging.


Assuntos
Envelhecimento/metabolismo , Modelos Animais de Doenças , Fator de Crescimento Insulin-Like I/biossíntese , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/biossíntese , Animais , Aorta/metabolismo , Apoptose , Feminino , Técnicas de Silenciamento de Genes , Glutamato-Cisteína Ligase/biossíntese , Heme Oxigenase-1/biossíntese , Peróxido de Hidrogênio/metabolismo , Hiperglicemia/metabolismo , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like I/genética , Lipoproteínas LDL/metabolismo , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , NAD(P)H Desidrogenase (Quinona)/biossíntese , Estresse Oxidativo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA