Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Theor Biol ; 529: 110856, 2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34363836

RESUMO

Blood Oxygen Level Dependent (BOLD) signal indirectly characterizes neuronal activity by measuring hemodynamic and metabolic changes in the nearby microvasculature. A deeper understanding of how localized changes in electrical, metabolic and hemodynamic factors translate into a BOLD signal is crucial for the interpretation of functional brain imaging techniques. While positive BOLD responses (PBR) are widely considered to be linked with neuronal activation, the origins of negative BOLD responses (NBR) have remained largely unknown. As NBRs are sometimes observed in close proximity of regions with PBR, a blood "stealing" effect, i.e., redirection of blood from a passive periphery to the area with high neuronal activity, has been postulated. In this study, we used the Hagen-Poiseuille equation to model hemodynamics in an idealized microvascular network that account for the particulate nature of blood and nonlinearities arising from the red blood cell (RBC) distribution (i.e., the Fåhraeus, Fåhraeus-Lindqvist and the phase separation effects). Using this detailed model, we evaluate determinants driving this "stealing" effect in a microvascular network with geometric parameters within physiological ranges. Model simulations predict that during localized cerebral blood flow (CBF) increases due to neuronal activation-hyperemic response, blood from surrounding vessels is reallocated towards the activated region. This stealing effect depended on the resistance of the microvasculature and the uneven distribution of RBCs at vessel bifurcations. A parsimonious model consisting of two-connected windkessel regions sharing a supplying artery was proposed to simulate the stealing effect with a minimum number of parameters. Comparison with the detailed model showed that the parsimonious model can reproduce the observed response for hematocrit values within the physiological range for different species. Our novel parsimonious model promise to be of use for statistical inference (top-down analysis) from direct blood flow measurements (e.g., arterial spin labeling and laser Doppler/Speckle flowmetry), and when combined with theoretical models for oxygen extraction/diffusion will help account for some types of NBRs.


Assuntos
Imageamento por Ressonância Magnética , Roubo , Encéfalo , Circulação Cerebrovascular , Hematócrito , Hemodinâmica , Oxigênio
2.
Brain Topogr ; 32(4): 583-598, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29362974

RESUMO

Electrocorticography (ECoG) is an electrophysiological technique that records brain activity directly from the cortical surface with high temporal (ms) and spatial (mm) resolution. Its major limitations are in the high invasiveness and in the restricted field-of-view of the electrode grid, which partially covers the cortex. To infer brain activity at locations different from just below the electrodes, it is necessary to solve the electromagnetic inverse problem. Limitations in the performance of source reconstruction algorithms from ECoG have been, to date, only partially addressed in the literature, and a systematic evaluation is still lacking. The main goal of this study is to provide a quantitative evaluation of resolution properties of widely used inverse methods (eLORETA and MNE) for various ECoG grid sizes, in terms of localization error, spatial dispersion, and overall amplitude. Additionally, this study aims at evaluating how the use of simultaneous electroencephalography (EEG) affects the above properties. For these purposes, we take advantage of a unique dataset in which a monkey underwent a simultaneous recording with a 128 channel ECoG grid and an 18 channel EEG grid. Our results show that, in general conditions, the reconstruction of cortical activity located more than 1 cm away from the ECoG grid is not accurate, since the localization error increases linearly with the distance from the electrodes. This problem can be partially overcome by recording simultaneously ECoG and EEG. However, this analysis enlightens the necessity to design inverse algorithms specifically targeted at taking into account the limited field-of-view of the ECoG grid.


Assuntos
Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Algoritmos , Encéfalo/fisiologia , Eletrodos , Humanos
3.
Brain Topogr ; 32(4): 599-624, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-27026168

RESUMO

The curtain of technical limitations impeding rat multichannel non-invasive electroencephalography (EEG) has risen. Given the importance of this preclinical model, development and validation of EEG source imaging (ESI) is essential. We investigate the validity of well-known human ESI methodologies in rats which individual tissue geometries have been approximated by those extracted from an MRI template, leading also to imprecision in electrode localizations. With the half and fifth sensitivity volumes we determine both the theoretical minimum electrode separation for non-redundant scalp EEG measurements and the electrode sensitivity resolution, which vary over the scalp because of the head geometry. According to our results, electrodes should be at least ~3 to 3.5 mm apart for an optimal configuration. The sensitivity resolution is generally worse for electrodes at the boundaries of the scalp measured region, though, by analogy with human montages, concentrates the sensitivity enough to localize sources. Cramér-Rao lower bounds of source localization errors indicate it is theoretically possible to achieve ESI accuracy at the level of anatomical structures, such as the stimulus-specific somatosensory areas, using the template. More validation for this approximation is provided through the comparison between the template and the individual lead field matrices, for several rats. Finally, using well-accepted inverse methods, we demonstrate that somatosensory ESI is not only expected but also allows exploring unknown phenomena related to global sensory integration. Inheriting the advantages and pitfalls of human ESI, rat ESI will boost the understanding of brain pathophysiological mechanisms and the evaluation of ESI methodologies, new pharmacological treatments and ESI-based biomarkers.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Animais , Encéfalo/fisiologia , Encefalopatias , Eletrodos , Humanos , Imageamento por Ressonância Magnética , Masculino , Ratos , Couro Cabeludo
4.
Brain Res Bull ; 205: 110811, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952679

RESUMO

An individual's brain predicted age minus chronological age (brain-PAD) obtained from MRIs could become a biomarker of disease in research studies. However, brain age reports from clinical MRIs are scant despite the rich clinical information hospitals provide. Since clinical MRI protocols are meant for specific clinical purposes, performance of brain age predictions on clinical data need to be tested. We explored the feasibility of using DeepBrainNet, a deep network previously trained on research-oriented MRIs, to predict the brain ages of 840 patients who visited 15 facilities of a health system in Florida. Anticipating a strong prediction bias in our clinical sample, we characterized it to propose a covariate model in group-level regressions of brain-PAD (recommended to avoid Type I, II errors), and tested its generalizability, a requirement for meaningful brain age predictions in new single clinical cases. The best bias-related covariate model was scanner-independent and linear in age, while the best method to estimate bias-free brain ages was the inverse of a scanner-independent and quadratic in brain age function. We demonstrated the feasibility to detect sex-related differences in brain-PAD using group-level regression accounting for the selected covariate model. These differences were preserved after bias correction. The Mean-Average Error (MAE) of the predictions in independent data was ∼8 years, 2-3 years greater than reports for research-oriented MRIs using DeepBrainNet, whereas an R2 (assuming no bias) was 0.33 and 0.76 for the uncorrected and corrected brain ages, respectively. DeepBrainNet on clinical populations seems feasible, but more accurate algorithms or transfer-learning retraining is needed.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Estudos de Viabilidade , Encéfalo/diagnóstico por imagem , Algoritmos
5.
Sci Rep ; 13(1): 19570, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950024

RESUMO

The difference between the estimated brain age and the chronological age ('brain-PAD') could become a clinical biomarker. However, most brain age models were developed for research-grade high-resolution T1-weighted MRIs, limiting their applicability to clinical-grade MRIs from various protocols. We adopted a dual-transfer learning strategy to develop a model agnostic to modality, resolution, or slice orientation. We retrained a convolutional neural network (CNN) using 6281 clinical MRIs from 1559 patients, among 7 modalities and 8 scanner models. The CNN was trained to estimate brain age from synthetic research-grade magnetization-prepared rapid gradient-echo MRIs (MPRAGEs) generated by a 'super-resolution' method. The model failed with T2-weighted Gradient-Echo MRIs. The mean absolute error (MAE) was 5.86-8.59 years across the other modalities, still higher than for research-grade MRIs, but comparable between actual and synthetic MPRAGEs for some modalities. We modeled the "regression bias" in brain age, for its correction is crucial for providing unbiased summary statistics of brain age or for personalized brain age-based biomarkers. The bias model was generalizable as its correction eliminated any correlation between brain-PAD and chronological age in new samples. Brain-PAD was reliable across modalities. We demonstrate the feasibility of brain age predictions from arbitrary clinical-grade MRIs, thereby contributing to personalized medicine.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Encéfalo/diagnóstico por imagem
6.
J Pain ; : 104423, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37952863

RESUMO

Chronic pain is driven by factors across the biopsychosocial spectrum. Previously, we demonstrated that magnetic resonance images (MRI)-based brain-predicted age differences (brain-PAD: brain-predicted age minus chronological age) were significantly associated with pain severity in individuals with chronic knee pain. We also previously identified four distinct, replicable, multidimensional psychological profiles significantly associated with clinical pain. The brain aging-psychological characteristics interface in persons with chronic pain promises elucidating factors contributing to their poor health outcomes, yet this relationship is barely understood. That is why we examined the interplay between the psychological profiles in participants having chronic knee pain impacting function, brain-PAD, and clinical pain severity. Controlling for demographics and MRI scanner, we compared the brain-PAD among psychological profiles at baseline (n = 164) and over two years (n = 90). We also explored whether profile-related differences in pain severity were mediated by brain-PAD. Brain-PAD differed significantly between profiles (ANOVA's omnibus test, P = .039). Specifically, participants in the profile 3 group (high negative/low positive emotions) had an average brain-PAD ∼4 years higher than those in profile- (low somatic reactivity), with P = .047, Bonferroni-corrected, and than those in profile 2 (high coping), with P = .027, uncorrected. Repeated measures ANOVA revealed no significant change in profile-related brain-PAD differences over time, but there was a significant decrease in brain-PAD for profile 4 (high optimism/high positive affect), with P = .045. Moreover, profile-related differences in pain severity at baseline were partly explained by brain-PAD differences between profile 3 and 1, or 2; but brain-PAD did not significantly mediate the influence of variations in profiles on changes in pain severity over time. PERSPECTIVE: Accelerated brain aging could underlie the psychological-pain relationship, and psychological characteristics may predispose individuals with chronic knee pain to worse health outcomes via neuropsychological processes.

7.
Pain ; 164(12): 2822-2838, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490099

RESUMO

ABSTRACT: Brain age predicted differences (brain-PAD: predicted brain age minus chronological age) have been reported to be significantly larger for individuals with chronic pain compared with those without. However, a debate remains after one article showed no significant differences. Using Gaussian Process Regression, an article provides evidence that these negative results might owe to the use of mixed samples by reporting a differential effect of chronic pain on brain-PAD across pain types. However, some remaining methodological issues regarding training sample size and sex-specific effects should be tackled before settling this controversy. Here, we explored differences in brain-PAD between musculoskeletal pain types and controls using a novel convolutional neural network for predicting brain-PADs, ie, DeepBrainNet. Based on a very large, multi-institutional, and heterogeneous training sample and requiring less magnetic resonance imaging preprocessing than other methods for brain age prediction, DeepBrainNet offers robust and reproducible brain-PADs, possibly highly sensitive to neuropathology. Controlling for scanner-related variability, we used a large sample (n = 660) with different scanners, ages (19-83 years), and musculoskeletal pain types (chronic low back [CBP] and osteoarthritis [OA] pain). Irrespective of sex, brain-PAD of OA pain participants was ∼3 to 4.7 years higher than that of CBP and controls, whereas brain-PAD did not significantly differ among controls and CBP. Moreover, brain-PAD was significantly related to multiple variables underlying the multidimensional pain experience. This comprehensive work adds evidence of pain type-specific effects of chronic pain on brain age. This could help in the clarification of the debate around possible relationships between brain aging mechanisms and pain.


Assuntos
Dor Crônica , Dor Musculoesquelética , Osteoartrite , Feminino , Humanos , Masculino , Envelhecimento/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Dor Crônica/patologia , Imageamento por Ressonância Magnética/métodos , Dor Musculoesquelética/patologia , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
8.
Pain Res Manag ; 2022: 4347759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432664

RESUMO

Aging is associated with poor sleep quality and greater chronic pain prevalence, with age-related changes in brain function as potential underlying mechanisms. Objective. The following cross-sectional study aimed to determine whether self-reported chronic musculoskeletal pain in community-dwelling older adults moderates the association between sleep quality and resting state functional brain connectivity (rsFC). Methods. Community-dwelling older individuals (mean age = 73.29 years) part of the NEPAL study who completed the Pittsburg Sleep Quality Index (PSQI) and a rsFC scan were included (n = 48) in the present investigation. To that end, we tested the effect of chronic pain-by-PSQI interaction on rsFC among atlas-based brain regions-of-interest, controlling for age and sex. Results and Discussion. A significant network connecting the bilateral putamen and left caudate with bilateral precentral gyrus, postcentral gyrus, and juxtapositional lobule cortex, survived global multiple comparisons (FDR; q < 0.05) and threshold-free network-based-statistics. Greater PSQI scores were significantly associated with greater dorsostriatal-sensorimotor rsFC in the no-pain group, suggesting that a state of somatomotor hyperarousal may be associated with poorer sleep quality in this group. However, in the pain group, greater PSQI scores were associated with less dorsostriatal-sensorimotor rsFC, possibly due to a shift of striatal functions toward regulation sensorimotor aspects of the pain experience, and/or aberrant cortico-striatal loops in the presence of chronic pain. This preliminary investigation advances knowledge about the neurobiology underlying the associations between chronic pain and sleep in community-dwelling older adults that may contribute to the development of effective therapies to decrease disability in geriatric populations.


Assuntos
Dor Crônica , Dor Musculoesquelética , Distúrbios do Início e da Manutenção do Sono , Idoso , Dor Crônica/complicações , Dor Crônica/diagnóstico por imagem , Estudos Transversais , Humanos , Vida Independente , Imageamento por Ressonância Magnética/métodos , Dor Musculoesquelética/complicações , Qualidade do Sono
9.
Clin J Pain ; 38(7): 451-458, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35656805

RESUMO

OBJECTIVES: Pain sensitivity and the brain structure are critical in modulating pain and may contribute to the maintenance of pain in older adults. However, a paucity of evidence exists investigating the link between pain sensitivity and brain morphometry in older adults. The purpose of the study was to identify pain sensitivity profiles in healthy, community-dwelling older adults using a multimodal quantitative sensory testing protocol and to differentiate profiles based on brain morphometry. MATERIALS AND METHODS: This study was a secondary analysis of the Neuromodulatory Examination of Pain and Mobility Across the Lifespan (NEPAL) study. Participants completed demographic and psychological questionnaires, quantitative sensory testing, and a neuroimaging session. A Principal Component Analysis with Varimax rotation followed by hierarchical cluster analysis identified 4 pain sensitivity clusters (the "pain clusters"). RESULTS: Sixty-two older adults ranging from 60 to 94 years old without a specific pain condition (mean [SD] age=71.44 [6.69] y, 66.1% female) were analyzed. Four pain clusters were identified characterized by (1) thermal pain insensitivity; (2) high pinprick pain ratings and pressure pain insensitivity; (3) high thermal pain ratings and high temporal summation; and (4) thermal pain sensitivity, low thermal pain ratings, and low mechanical temporal summation. Sex differences were observed between pain clusters. Pain clusters 2 and 4 were distinguished by differences in the brain cortical volume in the parieto-occipital region. DISCUSSION: While sufficient evidence exists demonstrating pain sensitivity profiles in younger individuals and in those with chronic pain conditions, the finding that subgroups of experimental pain sensitivity also exist in healthy older adults is novel. Identifying these factors in older adults may help differentiate the underlying mechanisms contributing to pain and aging.


Assuntos
Dor Crônica , Vida Independente , Idoso , Doença Crônica , Dor Crônica/psicologia , Feminino , Humanos , Masculino , Medição da Dor/métodos , Limiar da Dor/psicologia , Fenótipo
10.
J Pain Res ; 15: 3575-3587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415658

RESUMO

Purpose: Knee OA-related pain varies in impact across individuals and may relate to central nervous system alterations like accelerated brain aging processes. We previously reported that older adults with chronic musculoskeletal pain had a significantly greater brain-predicted age, compared to pain-free controls, indicating an "older" appearing brain. Yet this association is not well understood. This cross-sectional study examines brain-predicted age differences associated with chronic knee osteoarthritis pain, in a larger, more demographically diverse sample with consideration for pain's impact. Patients and Methods: Participants (mean age = 57.8 ± 8.0 years) with/without knee OA-related pain were classified according to pain's impact on daily function (ie, impact): low-impact (n=111), and high-impact (n=60) pain, and pain-free controls (n=31). Participants completed demographic, pain, and psychosocial assessments, and T1-weighted magnetic resonance imaging. Brain-predicted age difference (brain-PAD) was compared across groups using analysis of covariance. Partial correlations examined associations of brain-PAD with pain and psychosocial variables. Results: Individuals with high-impact chronic knee pain had significantly "older" brains for their age compared to individuals with low-impact knee pain (p < 0.05). Brain-PAD was also significantly associated with clinical pain, negative affect, passive coping, and pain catastrophizing (p's<0.05). Conclusion: Our findings suggest that high impact chronic knee pain is associated with an older appearing brain on MRI. Future studies are needed to determine the impact of pain-related interference and pain management on somatosensory processing and brain aging biomarkers for high-risk populations and effective intervention strategies.

11.
Neuroimage ; 57(3): 1162-76, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21570471

RESUMO

Patients with prosopagnosia are unable to recognize faces consciously, but when tested indirectly they can reveal residual identification abilities. The neural circuitry underlying this covert recognition is still unknown. One candidate for this function is the partial survival of a pathway linking the fusiform face area (FFA) and anterior-inferior temporal (AIT) cortex, which has been shown to be essential for conscious face identification. Here we performed functional magnetic, and diffusion tensor imaging in FE, a patient with severe prosopagnosia, with the goal of identifying the neural substrates of his robust covert face recognition. FE presented massive bilateral lesions in the fusiform gyri that eliminated both FFAs, and also disrupted the fibers within the inferior longitudinal fasciculi that link the visual areas with the AITs and medial temporal lobes. Therefore participation of the fusiform-temporal pathway in his covert recognition was precluded. However, face-selective activations were found bilaterally in his occipital gyri and in his extended face system (posterior cingulate and orbitofrontal areas), the latter with larger responses for previously-known faces than for faces of strangers. In the right hemisphere, these surviving face selective-areas were connected via a partially persevered inferior fronto-occipital fasciculus. This suggests an alternative occipito-frontal pathway, absent from current models of face processing, that could explain the patient's covert recognition while also playing a role in unconscious processing during normal cognition.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Reconhecimento Visual de Modelos/fisiologia , Prosopagnosia/fisiopatologia , Idoso , Encéfalo/patologia , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão , Face , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/patologia , Prosopagnosia/patologia
12.
Front Neurol ; 12: 659081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690906

RESUMO

Alongside positive blood oxygenation level-dependent (BOLD) responses associated with interictal epileptic discharges, a variety of negative BOLD responses (NBRs) are typically found in epileptic patients. Previous studies suggest that, in general, up to four mechanisms might underlie the genesis of NBRs in the brain: (i) neuronal disruption of network activity, (ii) altered balance of neurometabolic/vascular couplings, (iii) arterial blood stealing, and (iv) enhanced cortical inhibition. Detecting and classifying these mechanisms from BOLD signals are pivotal for the improvement of the specificity of the electroencephalography-functional magnetic resonance imaging (EEG-fMRI) image modality to identify the seizure-onset zones in refractory local epilepsy. This requires models with physiological interpretation that furnish the understanding of how these mechanisms are fingerprinted by their BOLD responses. Here, we used a Windkessel model with viscoelastic compliance/inductance in combination with dynamic models of both neuronal population activity and tissue/blood O2 to classify the hemodynamic response functions (HRFs) linked to the above mechanisms in the irritative zones of epileptic patients. First, we evaluated the most relevant imprints on the BOLD response caused by variations of key model parameters. Second, we demonstrated that a general linear model is enough to accurately represent the four different types of NBRs. Third, we tested the ability of a machine learning classifier, built from a simulated ensemble of HRFs, to predict the mechanism underlying the BOLD signal from irritative zones. Cross-validation indicates that these four mechanisms can be classified from realistic fMRI BOLD signals. To demonstrate proof of concept, we applied our methodology to EEG-fMRI data from five epileptic patients undergoing neurosurgery, suggesting the presence of some of these mechanisms. We concluded that a proper identification and interpretation of NBR mechanisms in epilepsy can be performed by combining general linear models and biophysically inspired models.

13.
Chronic Stress (Thousand Oaks) ; 5: 24705470211030273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34286166

RESUMO

BACKGROUND: Autonomic dysregulation may lead to blunted sympathetic reactivity in chronic pain states. Autonomic responses are controlled by the central autonomic network (CAN). Little research has examined sympathetic reactivity and associations with brain CAN structures in the presence of chronic pain; thus, the present study aims to investigate how chronic pain influences sympathetic reactivity and associations with CAN brain region volumes. METHODS: Sympathetic reactivity was measured as change in skin conductance level (ΔSCL) between a resting reference period and walking periods for typical and complex walking tasks (obstacle and dual-task). Participants included 31 people with (n = 19) and without (n = 12) chronic musculoskeletal pain. Structural 3 T MRI was used to determine gray matter volume associations with ΔSCL in regions of the CAN (i.e., brainstem, amygdala, insula, and anterior cingulate cortex). RESULTS: ΔSCL varied across walking tasks (main effect p = 0.036), with lower ΔSCL in chronic pain participants compared to controls across trials 2 and 3 under the obstacle walking condition. ΔSCL during typical walking was associated with multiple CAN gray matter volumes, including brainstem, bilateral insula, amygdala, and right caudal anterior cingulate cortex (p's < 0.05). The difference in ΔSCL from typical-to-obstacle walking were associated with volumes of the midbrain segment of the brainstem and anterior segment of the circular sulcus of the insula (p's < 0.05), with no other significant associations. The difference in ΔSCL from typical-to-dual task walking was associated with the bilateral caudal anterior cingulate cortex, and left rostral cingulate cortex (p's < 0.05). CONCLUSIONS: Sympathetic reactivity is blunted during typical and complex walking tasks in persons with chronic pain. Additionally, blunted sympathetic reactivity is associated with CAN brain structure, with direction of association dependent on brain region. These results support the idea that chronic pain may negatively impact typical autonomic responses needed for walking performance via its potential impact on the brain.

14.
Innov Aging ; 5(3): igab033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616958

RESUMO

BACKGROUND AND OBJECTIVES: Somatosensory function is critical for successful aging. Prior studies have shown declines in somatosensory function with age; however, this may be affected by testing site, modality, and biobehavioral factors. While somatosensory function declines are associated with peripheral nervous system degradation, little is known regarding correlates with the central nervous system and brain structure in particular. The objectives of this study were to examine age-related declines in somatosensory function using innocuous and noxious stimuli, across 2 anatomical testing sites, with considerations for affect and cognitive function, and associations between somatosensory function and brain structure in older adults. RESEARCH DESIGN AND METHODS: A cross-sectional analysis included 84 "younger" (n = 22, age range: 19-24 years) and "older" (n = 62, age range: 60-94 years) healthy adults who participated in the Neuromodulatory Examination of Pain and Mobility Across the Lifespan study. Participants were assessed on measures of somatosensory function (quantitative sensory testing), at 2 sites (metatarsal and thenar) using standardized procedures, and completed cognitive and psychological function measures and structural magnetic resonance imaging. RESULTS: Significant age × test site interaction effects were observed for warmth detection (p = .018, η p 2 = 0.10) and heat pain thresholds (p = .014, η p 2 = 0.12). Main age effects were observed for mechanical, vibratory, cold, and warmth detection thresholds (ps < .05), with older adults displaying a loss of sensory function. Significant associations between somatosensory function and brain gray matter structure emerged in the right occipital region, the right temporal region, and the left pericallosum. DISCUSSION AND IMPLICATIONS: Our findings indicate healthy older adults display alterations in sensory responses to innocuous and noxious stimuli compared to younger adults and, furthermore, these alterations are uniquely affected by anatomical site. These findings suggest a nonuniform decline in somatosensation in older adults, which may represent peripheral and central nervous system alterations part of aging processes.

15.
Pain Rep ; 6(4): e978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901680

RESUMO

INTRODUCTION: An individual's chronic pain history is associated with brain morphometric alterations; but little is known about the association between pain history and brain function. OBJECTIVES: This cross-sectional study aimed at determining how worst musculoskeletal pain intensity (WPINT) moderated the association between worst musculoskeletal pain duration (WPDUR) and brain resting-state magnetic resonance imaging functional connectivity (RSFC) in community-dwelling older adults (60-94 years, 75% females, 97% right-handed). METHODS: Resting-state magnetic resonance imaging functional connectivity between region of interests was linearly regressed on WPDUR and WPINT. Predictions were compared with a control group's average RSFC (61-85 years, 47% females, 95% right-handed). RESULTS: Three significant patterns emerged: (1) the positive association between WPDUR and RSFC between the medial prefrontal cortex, in the anterior salience network (SN), and bilateral lateral Brodmann area 6, in the visuospatial network (VSN), in participants with more severe chronic pain, resulting in abnormally lower RSFC for shorter WPDUR; (2) the negative association between WPDUR and RSFC between right VSN occipitotemporal cortex (lateral BA37 and visual V5) and bilateral VSN lateral Brodmann area 6, independently of WPINT, resulting in abnormally higher and lower RSFC for shorter and longer WPDUR, respectively; and (3) the positive association between WPDUR and the left hemisphere's salience network-default mode network connectivity (between the hippocampus and both dorsal insula and ventral or opercular BA44), independently of WPINT, resulting in abnormally higher RSFC for longer WPDUR. CONCLUSION: Musculoskeletal effects on brain functional networks of general healthy individuals could accumulate until being observable at older ages. Results invite to examinations of these effects' impact on function and memory.

16.
Ther Adv Musculoskelet Dis ; 13: 1759720X211059614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900003

RESUMO

INTRODUCTION: Psychological factors have been associated with knee osteoarthritis pain severity and treatment outcomes, yet their combined contribution to phenotypic heterogeneity is poorly understood. In particular, empirically derived psychological profiles must be replicated before they can be targeted or considered for treatment studies. The objectives of this study were to (1) confirm previously identified psychological profiles using unsupervised clustering methods in persons with knee osteoarthritis pain, (2) determine the replicability of profiles using supervised machine learning in a different sample, and (3) examine associations with clinical pain, brain structure, and experimental pain. METHODS: Participants included two cohorts of individuals with knee osteoarthritis pain recruited as part of the multisite UPLOAD1 (n = 270, mean age = 56.8 ± 7.6, male = 37%) and UPLOAD2 (n = 164, mean age = 57.73 ± 7.8, male = 36%) studies. Similar psychological constructs (e.g. optimism, coping, somatization, affect, depression, and anxiety), sociodemographic and clinical characteristics, and somatosensory function were assessed across samples. UPLOAD2 participants also completed brain magnetic resonance imaging. Unsupervised hierarchical clustering analysis was first conducted in UPLOAD1 data to derive clusters, followed by supervised linear discriminative analysis to predict group membership in UPLOAD2 data. Associations among cluster membership and clinical variables were assessed, controlling for age, sex, education, ethnicity/race, study site, and number of pain sites. RESULTS: Four distinct profiles emerged in UPLOAD1 and were replicated in UPLOAD2. Identified psychological profiles were associated with psychological variables (ps < 0.001), and clinical outcomes (ps = 0.001-0.03), indicating good internal and external validation of the cluster solution. Significant associations between psychological profiles and somatosensory function and brain structure were also found. CONCLUSIONS: This study highlights the importance of considering the biopsychosocial model in knee osteoarthritis pain assessment and treatment.

17.
Aging Brain ; 1: 100023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36911518

RESUMO

While aging is associated with social-cognitive change and oxytocin plays a crucial role in social cognition, oxytocin's effects on the social brain in older age remain understudied. To date, no study has examined the effects of chronic intranasal oxytocin administration on brain mechanisms underlying animacy perception in older adults. Using a placebo-controlled, randomized, double-blinded design in generally healthy older men (mean age (SD) = 69(6); n = 17 oxytocin; n = 14 placebo), this study determined the effects of a four-week intranasal oxytocin administration (24 international units/twice a day) on functional MRI (fMRI) during the Heider-Simmel task. This passive-viewing animacy perception paradigm contains video-clips of simple shapes suggesting social interactions (SOCIAL condition) or exhibiting random trajectories (RANDOM condition). While there were no oxytocin-specific effects on brain fMRI activation during the SOCIAL compared to the RANDOM condition, pre-to-post intervention change in the SOCIAL-RANDOM difference in functional connectivity (FC) was higher in the oxytocin compared to the placebo group in a network covering occipital, temporal, and parietal areas, and the superior temporal sulcus, a key structure in animacy perception. These findings suggest oxytocin modulation of circuits involved in action observation and social perception. Follow-up analyses on this network's connections suggested a pre-to-post intervention decrease in the SOCIAL-RANDOM difference in FC among the placebo group, possibly reflecting habituation to repeated exposure to social cues. Chronic oxytocin appeared to counter this process by decreasing FC during the RANDOM and increasing it during the SOCIAL condition. This study advances knowledge about oxytocin intervention mechanisms in the social brain of older adults.

18.
Neuroimage ; 49(3): 2328-39, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19850139

RESUMO

There are few studies on the neuroanatomical determinants of EEG spectral properties that would explain its substantial inter-individual variability in spite of decades of biophysical modeling that predicts this type of relationship. An exception is the negative relation between head size and the spectral position of the alpha peak (P(alpha)) reported in Nunez et al. (1978)-proposed as evidence of the influence of global boundary conditions on slightly damped neocortical waves. Here, we attempt to reexamine this finding by computing the correlations of occipital P(alpha) with various measures of head size and cortical surface area, for 222 subjects from the EEG/MRI database of the Cuban Human Brain Mapping Project. No relation is found (p>0.05). On the other hand, biophysical models also predict that white matter architecture, determining time delays and connectivities, could have an important influence on P(alpha). This led us to explore relations between P(alpha) and DTI fractional anisotropy by means of a multivariate penalized regression. Clusters of voxels with highly significant relations were found. These were positive within the Posterior and Superior Corona Radiata for both hemispheres, supporting biophysical theories predicting that the period of cortico-thalamocortical cycles might be modulating the alpha frequency. Posterior commissural fibers of the Corpus Callosum present the strongest relationships, negative in the inferior part (Splenium), connecting the inferior occipital lobes and positive in the superior part (Isthmus and Tapetum), connecting the superior occipital cortices. We found that white matter architecture rather than neocortical area determines the dynamics of the alpha rhythm.


Assuntos
Ritmo alfa , Mapeamento Encefálico , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Sinais Assistido por Computador
19.
Neural Netw ; 123: 52-69, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31830607

RESUMO

In this work, we propose a natural model for information flow in the brain through a neural message-passing dynamics on a structural network of macroscopic regions, such as the human connectome (HC). In our model, each brain region is assumed to have a binary behavior (active or not), the strengths of interactions among them are encoded in the anatomical connectivity matrix defined by the HC, and the dynamics of the system is defined by the Belief Propagation (BP) algorithm, working near the critical point of the network. We show that in the absence of direct external stimuli the BP algorithm converges to a spatial map of activations that is similar to the Default Mode Network (DMN) of the brain, which has been defined from the analysis of functional MRI data. Moreover, we use Susceptibility Propagation (SP) to compute the matrix of long-range correlations between the different regions and show that the modules defined by a clustering of this matrix resemble several Resting State Networks (RSN) determined experimentally. Both results suggest that the functional DMN and RSNs can be seen as simple consequences of the anatomical structure of the brain and a neural message-passing dynamics between macroscopic regions. With the new model, we explore predictions on how functional maps change when the anatomical brain network suffers structural alterations, like in Alzheimer's disease and in lesions of the Corpus Callosum. The implications and novel interpretations suggested by the model, as well as the role of criticality, are discussed.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Descanso , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia , Rede Nervosa/fisiopatologia , Descanso/fisiologia
20.
J Pain Res ; 13: 2389-2400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061554

RESUMO

INTRODUCTION: Musculoskeletal pain is prevalent in older adults representing the leading cause of disability in this population. Similarly, nearly half of older adults complain of difficulty sleeping. We aimed to explore the relationship between sleep quality with self-reported musculoskeletal pain, somatosensory and pain thresholds in community-dwelling older adults and further explore brain regions that may contribute to this association. METHODS: Older adults (>60 years old, n=69) from the NEPAL study completed demographic, pain and sleep assessments followed by a quantitative sensory testing battery. A subset (n=49) also underwent a 3T high-resolution, T1-weighted anatomical scan. RESULTS: Poorer sleep quality using the Pittsburgh Sleep Quality Index was positively associated with self-reported pain measures (all p's >0.05), but not somatosensory and pain thresholds (all p's >0.05). Using a non-parametric threshold-free cluster enhancement (TFCE) approach, worse sleep quality was significantly associated with lower cortical thickness in the precentral, postcentral, precuneus, superior parietal, and lateral occipital regions (TFCE-FWE-corrected at p < 0.05). Further, only postcentral cortical thickness significantly mediated the association between sleep quality and self-reported pain intensity using bootstrapped mediation methods. CONCLUSION: Our findings in older adults are similar to previous studies in younger individuals where sleep is significantly associated with self-reported pain. Specifically, our study implicates brain structure as a significant mediator of this association in aging. Future larger studies are needed to replicate our findings and to further understand if the brain can be a therapeutic target for both improved sleep and pain relief in older individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA