Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 146(14)2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332039

RESUMO

The discovery of a fetal origin for tissue-resident macrophages (trMacs) has inspired an intense search for the mechanisms underlying their development. Here, we performed in vivo lineage tracing of cells with an expression history of IL7Rα, a marker exclusively associated with the lymphoid lineage in adult hematopoiesis. Surprisingly, we found that Il7r-Cre labeled fetal-derived, adult trMacs. Labeling was almost complete in some tissues and partial in others. The putative progenitors of trMacs, yolk sac (YS) erythromyeloid progenitors, did not express IL7R, and YS hematopoiesis was unperturbed in IL7R-deficient mice. In contrast, tracking of IL7Rα message levels, surface expression, and Il7r-Cre-mediated labeling across fetal development revealed dynamic regulation of Il7r mRNA expression and rapid upregulation of IL7Rα surface protein upon transition from monocyte to macrophage within fetal tissues. Fetal monocyte differentiation in vitro produced IL7R+ macrophages, supporting a direct progenitor-progeny relationship. Additionally, blockade of IL7R function during late gestation specifically impaired the establishment of fetal-derived trMacs in vivo These data provide evidence for a distinct function of IL7Rα in fetal myelopoiesis and identify IL7R as a novel regulator of trMac development.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Macrófagos/fisiologia , Mielopoese/genética , Receptores de Interleucina-7/fisiologia , Animais , Embrião de Mamíferos , Feminino , Feto/metabolismo , Hematopoese/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez
2.
Cell Rep ; 41(8): 111677, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417858

RESUMO

Adult hematopoietic stem and progenitor cells (HSPCs) respond directly to inflammation and infection, causing both acute and persistent changes to quiescence, mobilization, and differentiation. Here we show that murine fetal HSPCs respond to prenatal inflammation in utero and that the fetal response shapes postnatal hematopoiesis and immune cell function. Heterogeneous fetal HSPCs show divergent responses to maternal immune activation (MIA), including changes in quiescence, expansion, and lineage-biased output. Single-cell transcriptomic analysis of fetal HSPCs in response to MIA reveals specific upregulation of inflammatory gene profiles in discrete, transient hematopoietic stem cell (HSC) populations that propagate expansion of lymphoid-biased progenitors. Beyond fetal development, MIA causes the inappropriate expansion and persistence of fetal lymphoid-biased progenitors postnatally, concomitant with increased cellularity and hyperresponsiveness of fetal-derived innate-like lymphocytes. Our investigation demonstrates how inflammation in utero can direct the output and function of fetal-derived immune cells by reshaping fetal HSC establishment.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Gravidez , Feminino , Camundongos , Animais , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Feto , Inflamação/metabolismo , Desenvolvimento Fetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA