RESUMO
The present work focuses on the use of defatted biomass of the microalga Nannochloropsis sp. from the biodiesel industry, as a partial substitute of fish meal (FM) in diets for European sea bass. The effects of increasing inclusion levels of microalgal meal on growth performance, body composition, nutrient utilization, gut morphology, and innate immunity were evaluated after 93 days. A reference alga-free diet was the control (CTRL) diet, and the three experimental diets contained 5 (MA5), 10 (MA10), and 15% (MA15) of the microalgal meal. The microalga-rich diets were supplemented with DL-methionine to assure sea bass dietary requirement. Overall, nutrient apparent digestibilities (ADCs) of the diets were not altered by the microalgal inclusion, but energy ADC was highest in fish fed the CTRL diet (90% vs 88%). At the end of the trial, fish growth performance was similar among dietary treatments (DGI of 1.0), but fish fed MA10 had a significantly higher feed conversion ratio than those fed CTRL and MA5. Final whole body composition and nutrient gain of fish fed the different diets were similar. No significant differences were detected in gut morphology among treatments. Innate immune parameters (lysozyme, alternative complement pathway-ACH50, and peroxidase) were examined, and ACH50 of the fish fed MA15 was significantly lower than those fed MA10, suggesting a dose-dependent stimulation of the innate immune response. The present results indicate that defatted microalgal meal can replace fishmeal in European sea bass diets-at inclusion levels of up to 15%-contributing to a circular economy approach.
Assuntos
Ração Animal/análise , Bass/fisiologia , Proteínas Alimentares/análise , Microalgas , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biocombustíveis , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Digestão , Distribuição AleatóriaRESUMO
Microalgae have been used as live food in aquatic species. In recent years, the interest in microalgae has considerably increased, thanks to the evolution of production techniques that have identified them as an ecologically attractive aquafeed ingredient. The present study provides the first data about the effects of dietary inclusion of a microalgae consortium grown in a high-rate algal pond system on zootechnical performance, morphometric indices, and dietary nutrient digestibility as well as morphology and functionality of the digestive system of European sea bass, Dicentrarchus labrax. A dietary treatment including a commercial mono-cultured microalgae (Nannochloropsis sp.) biomass was used for comparison. Six hundred and thirty-six European sea bass juveniles (18 ± 0.28 g) were randomly allotted into 12 experimental groups and fed 4 different diets for 10 weeks: a control diet based on fish meal, fish oil, and plant protein sources; a diet including 10% of Nannochloropsis spp. biomass (100 g/kg diet); and two diets including two levels (10% and 20%) of the microalgal consortium (100 and 200 g/kg diet). Even at the highest dietary inclusion level, the microalgal consortium (200 g/kg diet) did not affect feed palatability and fish growth performance. A significant decrease in the apparent digestibility of dry matter, protein, and energy was observed in diets including 10 and 20% of the microalgal consortium, but all fish exhibited a well-preserved intestinal histomorphology. Moreover, dietary inclusion with the microalgal consortium significantly increased the enzymatic activity of maltase, sucrase-isomaltase, and ɤ-glutamil transpeptidase in the distal intestine of the treated European sea bass. Algal consortium grown using fish farm effluents represents an attempt to enhance the utilization of natural biomasses in aquafeeds when used at 10 % as substitute of vegetable ingredients in diet for European sea bass.
Assuntos
Bass , Microalgas , Ração Animal/análise , Animais , Biomassa , Dieta/veterinária , LagoasRESUMO
The long term effects of fish oil (FO) substitution by increasing the levels of vegetable oils (VO), 0% (CTR), 50% (VO50) and 100% (VO100), in diets for Senegalese sole were evaluated in terms of skeletal muscle cellularity and expression of related genes. After 140 days of feeding, all fish had similar body weight and length. The inclusion of 50% VO did not result in differences in muscle cellularity, but dorsal muscle cross-sectional area and fast-twitch fibre diameter increased in fish fed total FO substitution, whilst fibre density was reduced (P < 0.05) in relation to CTR. The total number of fibres was similar in all treatments. FO substitution did not affect the transcript levels of myogenic genes (myf5, mrf4, myog, myod1, myod2), but resulted in a two-fold increase of fgf6 transcript levels compared to CTR (P < 0.05). The relative expression of igf-I was higher in VO100 than in VO50, but was similar to CTR. FO substitution resulted in cellularity changes related to the stimulation of muscle hypertrophic growth, but not hyperplastic growth, and associated with a nutritional modulation of fgf6 by dietary VO. This study indicates that 50% VO does not affect the muscle phenotype, but total FO substitution stimulates muscle hypertrophy.