Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Rev Med Virol ; 26(3): 146-60, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26817660

RESUMO

Viral replication and spreading are fundamental events in the viral life cycle, accounting for the assembly and egression of nascent virions, events that are directly associated with viral pathogenesis in target hosts. These processes occur in cellular compartments that are modified by specialized viral proteins, causing a rearrangement of different cell membranes in infected cells and affecting the ER, mitochondria, Golgi apparatus, vesicles and endosomes, as well as processes such as autophagic membrane flux. In fact, the activation or inhibition of membrane trafficking and other related activities are fundamental to ensure the adequate replication and spreading of certain viruses. In this review, data will be presented that support the key role of membrane dynamics in the viral cycle, especially in terms of the assembly, egression and infection processes. By defining how viruses orchestrate these events it will be possible to understand how they successfully complete their route of infection, establishing viral pathogenesis and provoking disease.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/virologia , Viroses/metabolismo , Viroses/virologia , Fenômenos Fisiológicos Virais , Animais , Humanos , Montagem de Vírus , Liberação de Vírus , Replicação Viral
2.
Retrovirology ; 12: 53, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26105074

RESUMO

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) has evolved a complex strategy to overcome the immune barriers it encounters throughout an organism thanks to its viral infectivity factor (Vif), a key protein for HIV-1 infectivity and in vivo pathogenesis. Vif interacts with and promotes "apolipoprotein B mRNA-editing enzyme-catalytic, polypeptide-like 3G" (A3G) ubiquitination and subsequent degradation by the proteasome, thus eluding A3G restriction activity against HIV-1. RESULTS: We found that cellular histone deacetylase 6 (HDAC6) directly interacts with A3G through its C-terminal BUZ domain (residues 841-1,215) to undergo a cellular co-distribution along microtubules and cytoplasm. The HDAC6/A3G complex occurs in the absence or presence of Vif, competes for Vif-mediated A3G degradation, and accounts for A3G steady-state expression level. In fact, HDAC6 directly interacts with and promotes Vif autophagic clearance, thanks to its C-terminal BUZ domain, a process requiring the deacetylase activity of HDAC6. HDAC6 degrades Vif without affecting the core binding factor ß (CBF-ß), a Vif-associated partner reported to be key for Vif- mediated A3G degradation. Thus HDAC6 antagonizes the proviral activity of Vif/CBF-ß-associated complex by targeting Vif and stabilizing A3G. Finally, in cells producing virions, we observed a clear-cut correlation between the ability of HDAC6 to degrade Vif and to restore A3G expression, suggesting that HDAC6 controls the amount of Vif incorporated into nascent virions and the ability of HIV-1 particles of being infectious. This effect seems independent on the presence of A3G inside virions and on viral tropism. CONCLUSIONS: Our study identifies for the first time a new cellular complex, HDAC6/A3G, involved in the autophagic degradation of Vif, and suggests that HDAC6 represents a new antiviral factor capable of controlling HIV-1 infectiveness by counteracting Vif and its functions.


Assuntos
Autofagia , Citidina Desaminase/metabolismo , HIV-1/fisiologia , Histona Desacetilases/metabolismo , Interações Hospedeiro-Patógeno , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Desaminase APOBEC-3G , Linhagem Celular , Células Epiteliais/virologia , Desacetilase 6 de Histona , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteólise
3.
Retrovirology ; 10: 39, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575248

RESUMO

BACKGROUND: HIV-1 entry into target lymphocytes requires the activity of actin adaptors that stabilize and reorganize cortical F-actin, like moesin and filamin-A. These alterations are necessary for the redistribution of CD4-CXCR4/CCR5 to one pole of the cell, a process that increases the probability of HIV-1 Envelope (Env)-CD4/co-receptor interactions and that generates the tension at the plasma membrane necessary to potentiate fusion pore formation, thereby favouring early HIV-1 infection. However, it remains unclear whether the dynamic processing of F-actin and the amount of cortical actin available during the initial virus-cell contact are required to such events. RESULTS: Here we show that gelsolin restructures cortical F-actin during HIV-1 Env-gp120-mediated signalling, without affecting cell-surface expression of receptors or viral co-receptor signalling. Remarkably, efficient HIV-1 Env-mediated membrane fusion and infection of permissive lymphocytes were impaired when gelsolin was either overexpressed or silenced, which led to a loss or gain of cortical actin, respectively. Indeed, HIV-1 Env-gp120-induced F-actin reorganization and viral receptor capping were impaired under these experimental conditions. Moreover, gelsolin knockdown promoted HIV-1 Env-gp120-mediated aberrant pseudopodia formation. These perturbed-actin events are responsible for the inhibition of early HIV-1 infection. CONCLUSIONS: For the first time we provide evidence that through its severing of cortical actin, and by controlling the amount of actin available for reorganization during HIV-1 Env-mediated viral fusion, entry and infection, gelsolin can constitute a barrier that restricts HIV-1 infection of CD4+ lymphocytes in a pre-fusion step. These findings provide important insights into the complex molecular and actin-associated dynamics events that underlie early viral infection. Thus, we propose that gelsolin is a new factor that can limit HIV-1 infection acting at a pre-fusion step, and accordingly, cell-signals that regulate gelsolin expression and/or its actin-severing activity may be crucial to combat HIV-1 infection.


Assuntos
Actinas/antagonistas & inibidores , Antivirais/metabolismo , Linfócitos T CD4-Positivos/imunologia , Gelsolina/metabolismo , HIV-1/imunologia , Receptores de HIV/antagonistas & inibidores , Internalização do Vírus , Antivirais/uso terapêutico , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , HIV-1/fisiologia , Humanos , Transdução de Sinais
4.
J Infect Dis ; 203(11): 1590-4, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21592988

RESUMO

We investigated the association of polymorphisms in CCR5, the major human immunodeficiency virus (HIV)-1 coreceptor, and copy number of its potent ligand CCL3L1 with tuberculosis in 298 individuals from Colombia. The CCR5-HHD haplotype, a known genetic determinant of increased susceptibility to HIV-AIDS, and a high copy number of CCL3L1, a known genetic determinant of enhanced CCL3/CCL3L1 chemokine expression, each associated with presence of tuberculosis. Furthermore, CCR5-HHD was associated with higher CCR5 gene and surface expression. These results substantiate the strong link between the pro-inflammatory effects of CCR5 and its ligands with active tuberculosis and suggest that chemokine-chemokine receptor genetic determinants may influence tuberculosis in addition to HIV/AIDS.


Assuntos
Quimiocinas CC/genética , Receptores CCR5/genética , Tuberculose/genética , Adulto , Estudos de Casos e Controles , Colômbia/epidemiologia , Feminino , Dosagem de Genes , Haplótipos , Humanos , Desequilíbrio de Ligação , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Tuberculose/epidemiologia
5.
mBio ; 9(2)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636433

RESUMO

A small group of HIV-1-infected individuals, called long-term nonprogressors (LTNPs), and in particular a subgroup of LTNPs, elite controllers (LTNP-ECs), display permanent control of viral replication and lack of clinical progression. This control is the result of a complex interaction of host, immune, and viral factors. We identified, by phylogenetic analysis, a cluster of LTNP-ECs infected with very similar low-replication HIV-1 viruses, suggesting the contribution of common viral features to the clinical LTNP-EC phenotype. HIV-1 envelope (Env) glycoprotein mediates signaling and promotes HIV-1 fusion, entry, and infection, being a key factor of viral fitness in vitro, cytopathicity, and infection progression in vivo Therefore, we isolated full-length env genes from viruses of these patients and from chronically infected control individuals. Functional characterization of the initial events of the viral infection showed that Envs from the LTNP-ECs were ineffective in the binding to CD4 and in the key triggering of actin/tubulin-cytoskeleton modifications compared to Envs from chronic patients. The viral properties of the cluster viruses result in a defective viral fusion, entry, and infection, and these properties were inherited by every virus of the cluster. Therefore, inefficient HIV-1 Env functions and signaling defects may contribute to the low viral replication capacity and transmissibility of the cluster viruses, suggesting a direct role in the LTNP-EC phenotype of these individuals. These results highlight the important role of viral characteristics in the LTNP-EC clinical phenotype. These Env viral properties were common to all the cluster viruses and thus support the heritability of the viral characteristics.IMPORTANCE HIV-1 long-term nonprogressor elite controller patients, due to their permanent control of viral replication, have been the object of numerous studies to identify the factors responsible for this clinical phenotype. In this work, we analyzed the viral characteristics of the envelopes of viruses from a phylogenetic cluster of LTNP-EC patients. These envelopes showed ineffective binding to CD4 and the subsequent signaling activity to modify actin/tubulin cytoskeletons, which result in low fusion and deficient entry and infection capacities. These Env viral characteristics could explain the nonprogressor clinical phenotype of these patients. In addition, these inefficient env viral properties were present in all viruses of the cluster, supporting the heritability of the viral phenotype.


Assuntos
Infecções por HIV/virologia , Sobreviventes de Longo Prazo ao HIV , HIV-1/genética , HIV-1/fisiologia , Internalização do Vírus , Antígenos CD4/metabolismo , Análise por Conglomerados , Genótipo , HIV-1/classificação , Humanos , Fenótipo , Filogenia , Ligação Proteica , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA