Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Environ Sci Technol ; 58(21): 9091-9101, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38709279

RESUMO

People of all ages consume salt every day, but is it really just salt? Plastic nanoparticles [nanoplastics (NPs)] pose an increasing environmental threat and have begun to contaminate everyday salt in consumer goods. Herein, we developed a combined surface enhanced Raman scattering (SERS) and stimulated Raman scattering (SRS) approach that can realize the filtration, enrichment, and detection of NPs in commercial salt. The Au-loaded (50 nm) anodic alumina oxide substrate was used as the SERS substrate to explore the potential types of NP contaminants in salts. SRS was used to conduct imaging and quantify the presence of the NPs. SRS detection was successfully established through standard plastics, and NPs were identified through the match of the hydrocarbon group of the nanoparticles. Simultaneously, the NPs were quantified based on the high spatial resolution and rapid imaging of the SRS imaging platform. NPs in sea salts produced in Asia, Australasia, Europe, and the Atlantic were studied. We estimate that, depending on the location, an average person could be ingesting as many as 6 million NPs per year through the consumption of sea salt alone. The potential health hazards associated with NP ingestion should not be underestimated.


Assuntos
Análise Espectral Raman , Plásticos , Nanopartículas , Cloreto de Sódio/química
2.
Nano Lett ; 19(1): 165-172, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525669

RESUMO

Because of their large figures of merit, surface lattice resonances (SLRs) in metal nanoparticle arrays are very promising for chemical and biomolecular sensing in both liquid and gas media. SLRs are sensitive to refractive index changes both near the surface of the nanoparticles (surface sensitivity) and in the volume between them (bulk sensitivity). Because of its intrinsic surface-sensitivity and a power law dependence on electric fields, second harmonic generation (SHG) spectroscopy can improve upon both the surface and volume sensitivities of SLRs. In this report on SHG spectroscopy of plasmonic nanoparticles, we show that the SHG signal is greatly increased (up to 450 times) by the SLRs. We also demonstrate very narrow resonances in SHG intensity (∼5 nm fwhm). We illustrate how the SHG resonances are highly sensitive to SLRs by varying the fundamental wavelength, angle of incidence, nanoparticle material, and lattice constant of the arrays. Finally, we identify an SHG resonance (10 nm fwhm) that is electric dipole forbidden and can be attributed to higher-order multipoles, enhanced by the strong near-fields of SLRs. Our results open up new and very promising avenues for chemical and biomolecular sensing based on SHG spectroscopy of SLRs.

3.
Anal Chem ; 91(21): 13647-13657, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31580648

RESUMO

Surface enhanced Raman spectroscopy (SERS) shows great promise in studying individual atmospheric aerosol. However, the lack of efficient, stable, uniform, large-array, and low-cost SERS substrates constitutes a major roadblock. Herein, a new SERS substrate is proposed for detecting individual atmospheric aerosol particles. It is based on the sphere segment void (SSV) structure of copper and silver (Cu/Ag) alloy. The SSV structure is prepared by an electrodeposition method and presents a uniform distribution, over large 2 cm2 arrays and at low cost. The substrate offers a high SERS enhancement factor (due to Ag) combined with lasting stability (due to Cu). The SSV structure of the arrays generates a high density of SERS hotspots (1.3 × 1014/cm2), making it an excellent substrate for atmospheric aerosol detection. For stimulated sulfate aerosols, the Raman signal is greatly enhanced (>50 times), an order of magnitude more than previously reported substrates for the same purpose. For ambient particles, collected and studied on a heavy haze day, the enhanced Raman signal allows ready observation of morphology and identification of chemical components, such as nitrates and sulfates. This work provides an efficient strategy for developing SERS substrate for detecting individual atmospheric aerosol.

4.
Chemphyschem ; 20(1): 62-69, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30444574

RESUMO

We have studied the circular dichroism (CD), in the ultraviolet and visible regions, of the transparent, chiral molecule 1,1'-Bi-2-naphtol (BINOL) in 1.5 µm thick films. The initial transparent film shows an additional negative cotton effect in the CD compared to solution. With time under room temperature the film undergoes a structural phase transition. This goes hand in hand with a cotton effect at the low energy absorption band which inverts with opposite propagation direction of light through the film which is revealed as a polarity reversal of ellipticity (PRE). After completion of the phase transition the film exhibits circular differential scattering throughout the visible range which also shows PRE. The structure change was studied with Raman, microscopy under cross polarization conditions and nonlinear second-harmonic generation circular dichroism (SHG-CD). The superposition of the optical activity of individual molecules and isotropy effects makes an interpretation challenging. Yet overcoming this challenge by finding a suitable model structural information can be derived from CD measurements.

5.
Analyst ; 145(1): 277-285, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31746822

RESUMO

Detecting atmospheric bioaerosols in a quantitative way is highly desirable for public health and safety. This work demonstrates that surface-enhanced Raman spectroscopy (SERS) is a simple and rapid analytical technique for the detection of atmospheric bioaerosols, on a Klarite substrate. For both simulated and ambient bioaerosols, this detection assay results in an increase in the enhancement factor of the Raman signal. We report a strong SERS signal generated by bioaerosols containing living Escherichia coli deposited on Klarite. Furthermore, we demonstrate that SERS mapping can be used to estimate the percentage of airborne, living Escherichia coli. Moreover, Klarite provides differently distinct SERS spectra at different bacterial growth phases, indicating its potential to identify changes occurring in the bacterial envelope. Finally, we applied SERS for the rapid detection of Escherichia coli in ambient bioaerosols without using time-consuming and laborious culture processes. Our results represent rapid, culture-free and label-free detection of airborne bacteria in the real-world environment.


Assuntos
Aerossóis/análise , Técnicas Bacteriológicas/métodos , Escherichia coli/isolamento & purificação , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Escherichia coli/classificação , Ouro/química , Viabilidade Microbiana , Silício/química
6.
Proc Natl Acad Sci U S A ; 113(20): 5503-7, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140648

RESUMO

Nanoactuators and nanomachines have long been sought after, but key bottlenecks remain. Forces at submicrometer scales are weak and slow, control is hard to achieve, and power cannot be reliably supplied. Despite the increasing complexity of nanodevices such as DNA origami and molecular machines, rapid mechanical operations are not yet possible. Here, we bind temperature-responsive polymers to charged Au nanoparticles, storing elastic energy that can be rapidly released under light control for repeatable isotropic nanoactuation. Optically heating above a critical temperature [Formula: see text] = 32 °C using plasmonic absorption of an incident laser causes the coatings to expel water and collapse within a microsecond to the nanoscale, millions of times faster than the base polymer. This triggers a controllable number of nanoparticles to tightly bind in clusters. Surprisingly, by cooling below [Formula: see text] their strong van der Waals attraction is overcome as the polymer expands, exerting nanoscale forces of several nN. This large force depends on van der Waals attractions between Au cores being very large in the collapsed polymer state, setting up a tightly compressed polymer spring which can be triggered into the inflated state. Our insights lead toward rational design of diverse colloidal nanomachines.

7.
Environ Sci Technol ; 51(11): 6260-6267, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28498657

RESUMO

A simple and rapid method for detecting chemical components of individual aerosol particles on Klarite substrate with surface-enhanced Raman spectroscopy (SERS) is described. For both single simulated aerosol particles and ambient atmospheric particles, this new analytical method promotes the enhancement factor of the Raman signal. The spectra of ammonium sulfate and naphthalene particles at the microscopic level are enhanced by a factor of 6 and therefore greatly improve the detection of the chemical composition of an individual aerosol particle. When aerosol particles are found over a microscopic domain, a set of Raman spectra with chemical information can be obtained via SERS mapping. The maps illustrate the distribution of organic or inorganic species on the SERS substrate. This constitutes a facile and rapid method to study aerosol particles. This new method allows the analysis of chemical composition in single aerosol particles, demonstrating the power of SERS to probe the ambient atmospheric particles and to study the formation of aerosol particles.


Assuntos
Aerossóis , Poluentes Atmosféricos/análise , Análise Espectral Raman , Sulfato de Amônio
8.
Small ; 10(19): 3970-8, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24916174

RESUMO

Photo-electrochemical water splitting is a very promising and environmentally friendly route for the conversion of solar energy into hydrogen. However, the solar-to-H2 conversion efficiency is still very low due to rapid bulk recombination of charge carriers. Here, a photonic nano-architecture is developed to improve charge carrier generation and separation by manipulating and confining light absorption in a visible-light-active photoanode constructed from BiVO4 photonic crystal and plasmonic nanostructures. Synergistic effects of photonic crystal stop bands and plasmonic absorption are observed to operate in this photonic nanostructure. Within the scaffold of an inverse opal photonic crystal, the surface plasmon resonance is significantly enhanced by the photonic Bragg resonance. Nanophotonic photoanodes show AM 1.5 photocurrent densities of 3.1 ± 0.1 mA cm(-2) at 1.23 V versus RHE, which is among the highest for oxide-based photoanodes and over 4 times higher than the unstructured planar photoanode.

9.
Opt Express ; 22(20): 23851-60, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25321963

RESUMO

We present a detailed theoretical analysis of the optical response of threaded plasmonic nanoparticle strings, chains of metallic nanoparticles connected by cylindrical metallic bridges (threads), based on full-electrodynamic calculations. The extinction spectra of these complex metallic nanostructures are dominated by large resonances in the near infrared, which are associated with charge transfer along the entire string. By analysing contour plots of the electric field amplitude and phase we show that such strings can be interpreted as an intermediate situation between metallic nanoparticle chains and metallic nanorods, exhibiting characteristics of both. Modifying the dielectric environment, the number of nanoparticles within the strings, and the dimensions of the threads, allows for tuning the optical response of the strings within a very broad region in the visible and near infrared.

10.
ACS Nano ; 18(26): 16766-16775, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38881465

RESUMO

Chirality is omnipresent in the living world. As biomimetic nanotechnology and self-assembly advance, they too need chirality. Accordingly, there is a pressing need to develop general methods to characterize chiral building blocks at the nanoscale in liquids such as water─the medium of life. Here, we demonstrate the chiroptical second-harmonic Tyndall scattering effect. The effect was observed in Si nanohelices, an example of a high-refractive-index dielectric nanomaterial. For three wavelengths of illumination, we observe a clear difference in the second-harmonic scattered light that depends on the chirality of the nanohelices and the handedness of circularly polarized light. Importantly, we provide a theoretical analysis that explains the origin of the effect and its direction dependence, resulting from different specific contributions of "electric dipole-magnetic dipole" and "electric dipole-electric quadrupole" coupling tensors. Using numerical simulations, we narrow down the number of such terms to 8 in forward scattering and to a single one in right-angled scattering. For chiral scatterers such as high-refractive-index dielectric nanoparticles, our findings expand the Tyndall scattering regime to nonlinear optics. Moreover, our theory can be broadened and adapted to further classes where such scattering has already been observed or is yet to be observed.

11.
Opt Express ; 21(25): 31105-18, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514685

RESUMO

The interaction between individual plasmonic nanoparticles plays a crucial role in tuning and shaping the surface plasmon resonances of a composite structure. Here, we demonstrate that the detailed character of the coupling between plasmonic structures can be captured by a modified "circuit" model. This approach is generally applicable and, as an example here, is applied to a dolmen-like nanostructure consisting of a vertically placed gold monomer slab and two horizontally placed dimer slabs. By utilizing the full-wave eigenmode expansion method (EEM), we extract the eigenmodes and eigenvalues for these constituting elements and reduce their electromagnetic interaction to the structures' mode interactions. Using the reaction concept, we further summarize the mode interactions within a "coupling" matrix. When the driving voltage source imposed by the incident light is identified, an equivalent circuit model can be constructed. Within this model, hybridization of the plasmonic modes in the constituting nanostructure elements is discussed. The proposed circuit model allows the reuse of powerful circuit analysis techniques in the context of plasmonic structures. As an example, we derive an equivalent of Thévenin's theorem in circuit theory for nanostructures. Applying the equivalent Thévenin's theorem, the well-known Fano resonance is easily explained.

12.
Opt Lett ; 38(13): 2256-8, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23811894

RESUMO

Following the impact of a single femtosecond light pulse on nickel nanostripes, material deformations-or "nanobumps"-are created. We have studied the dependence of these nanobumps on the length of nanostripes and verified the link with plasmons. More specifically, local electric currents can melt the nanostructures in the hotspots, where hydrodynamic processes give rise to nanobumps. This process is further confirmed by independently simulating local magnetic fields, since these are produced by the same local electric currents.


Assuntos
Elétrons , Nanoestruturas , Níquel/química , Condutividade Elétrica
13.
Biosens Bioelectron ; 219: 114843, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327563

RESUMO

Emerging antibiotic resistant bacteria constitute one of the biggest threats to public health. Surface-enhanced Raman scattering (SERS) is highly promising for detecting such bacteria and for antibiotic susceptibility testing (AST). SERS is fast, non-destructive (can probe living cells) and it is technologically flexible (readily integrated with robotics and machine learning algorithms). However, in order to integrate into efficient point-of-care (PoC) devices and to effectively replace the current culture-based methods, it needs to overcome the challenges of reliability, cost and complexity. Recently, significant progress has been made with the emergence of both new questions and new promising directions of research and technological development. This article brings together insights from several representative SERS-based AST studies and approaches oriented towards clinical PoC biosensing. It aims to serve as a reference source that can guide progress towards PoC routines for identifying antibiotic resistant pathogens. In turn, such identification would help to trace the origin of sporadic infections, in order to prevent outbreaks and to design effective medical treatment and preventive procedures.


Assuntos
Técnicas Biossensoriais , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Bactérias , Antibacterianos/farmacologia , Análise Espectral Raman/métodos
14.
Adv Mater ; 35(34): e2209282, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36631958

RESUMO

Against the background of the current healthcare and climate emergencies, surface enhanced Raman scattering (SERS) is becoming a highly topical technique for identifying and fingerprinting molecules, e.g., within viruses, bacteria, drugs, and atmospheric aerosols. Crucial for SERS is the need for substrates with strong and reproducible enhancements of the Raman signal over large areas and with a low fabrication cost. Here, dense arrays of plasmonic nanohelices (≈100 nm in length), which are of interest for many advanced nanophotonics applications, are investigated, and they are shown to present excellent SERS properties. As an illustration, two new ways to probe near-field enhancement generated with circular polarization at chiral metasurfaces are presented, first using the Raman spectra of achiral molecules (crystal violet) and second using a single, element-specific, achiral molecular vibrational mode (i.e., a single Raman peak). The nanohelices can be fabricated over large areas at a low cost and they provide strong, robust and uniform Raman enhancement. It is anticipated that these advanced materials will find broad applications in surface enhanced Raman spectroscopies and material science.

15.
Phys Chem Chem Phys ; 14(6): 1860-4, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22234394

RESUMO

Faraday rotation and its dispersion have been measured and calculated in the 400-800 nm wavelength range for a set of saturated organic liquids. The resulting Verdet constants are fitted and trends are analyzed. Comparisons are made to both the polarizability and diamagnetic susceptibility. The data are applied to a connectivity index model, allowing prediction of Verdet constants of aliphatic organic liquids from 400 to 800 nm. The observed correlations and connectivity model improve the understanding of Faraday rotation in diamagnetic materials, allowing for future optimization.

16.
Appl Opt ; 51(2): 209-13, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22270518

RESUMO

We have measured the magnetization-induced second harmonic generation (MSHG) of a nanocomposite consisting of iron oxide nanoparticles in a polymer film. The existing theoretical framework is extended to include DC magnetic fields in order to characterize the MSHG signal and analyze the measurements. Additionally, magnetic hysteresis loops are measured for four principal polarizer-analyzer configurations, revealing the P(IN)-P(OUT) and S(IN)-P(OUT) polarizer-analyzer configurations to be sensitive to the transverse magnetic field. These results demonstrate the use of MSHG and the applied formalism as a tool to study magnetic nanoparticles and their magnetic properties.


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/química , Fenômenos Ópticos , Algoritmos , Luz , Fenômenos Magnéticos , Polímeros/química
17.
Nanomedicine ; 8(5): 559-68, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21945901

RESUMO

Magnetic-plasmonic nanoparticles, combining magnetic and plasmonic components, are promising structures for use in life sciences. Optical properties of core-shell magnetite-gold nanostructures, such as the wavelength of the plasmon resonance, the extinction cross-section, and the ratio of scattering to absorption at the plasmon wavelength are critical parameters in the search for the most suitable particles for envisioned applications. Using Mie theory and the discrete dipole approximation (DDA), optical spectra as a function of composition, size, and shape of core-shell nanospheres and nanorods were calculated. Calculations were done using simulated aqueous media, used throughout the life sciences. Our results indicate that in the advantageous near-infrared region (NIR), although magnetic-plasmonic nanospheres produced by available chemical methods lack the desirable tunability of optical characteristics, magnetic-plasmonic nanorods can achieve the desired optical properties at chemically attainable dimensions. The presented results can aid in the selection of suitable magnetic-plasmonic structures for applications in life sciences. FROM THE CLINICAL EDITOR: In this basic science study, magnetic-plasmonic nanoparticles are studied for future applications in life sciences. Optical properties of core-shell magnetite-gold nanostructures, such as the wavelength of the plasmon resonance, the extinction cross-section, and the ratio of scattering to absorption at the plasmon wavelength are critical parameters in the search for the most suitable particles for proposed future applications.


Assuntos
Nanopartículas de Magnetita/química , Nanosferas/química , Nanotubos/química , Ressonância de Plasmônio de Superfície/métodos , Disciplinas das Ciências Biológicas , Ouro/química , Humanos
18.
Nanoscale ; 14(10): 3888-3898, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35212336

RESUMO

Determining the chirality of molecules and nanoparticles often relies on circular dichroism and optical rotation: two chiral optical (chiroptical) effects in the linear optical regime. Although these linear effects are weak compared to nonlinear chiroptical effects, they have the advantage of being measured in isotropic liquids - free from the complications of anisotropy. Recently, a nonlinear effect: hyper-Rayleigh scattering optical activity (HRS OA) has been shown to reliably distinguish between the two chiral forms of Ag nanohelices, suspended in isotropic liquids. However, this first demonstration of HRS OA also opened new questions. For instance, at a fundamental level, it is not clear what the role of interactions between nanoparticles is. Moreover, the influence of the ultrafast pulse chirp is unknown. Here, we demonstrate HRS OA from well below two Ag nanohelices in the illumination volume, precluding any interactions. Additionally, we performed the first measurements of HRS depolarization ratios in this system and find a value of ≈1. We also show that HRS is highly robust against the chirp of the ultrafast pulses. An important reason for the strong (down to single nanohelix) sensitivity of our experiments is the large chiroptical interaction at the fundamental frequency; this point is illustrated with two sets of numerical simulations of the electromagnetic near-fields. Our results highlight HRS OA as a highly sensitive experimental method for characterization of chiral solutions/suspensions, in tiny illumination volumes.

19.
Langmuir ; 27(22): 13533-8, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21950967

RESUMO

We studied the adsorption kinetics of supported ultrathin films of dye-labeled polystyrene (l-PS) by combining dielectric spectroscopy (DS) and the interface-specific nonlinear optical second harmonic generation (SHG) technique. While DS is sensitive to the fraction of mobile dye moieties (chromophores), the SHG signal probes their anisotropic orientation. Time-resolved measurements were performed above the glass transition temperature on two different sample geometries. In one configuration, the l-PS layer is placed in contact with the aluminum surface, while in the other one, the deposition is done on a strongly adsorbed layer of neat PS. From the time dependence of the dielectric strength and SHG signal of the l-PS layer in contact with the metal, we detected two different kinetics regimes. We interpret these regimes in terms of the interplay between adsorption and orientation of the adsorbing labeling moieties. At early times, dye moieties get adsorbed adopting an orientation parallel to the surface. When adsorption proceeds to completeness, the kinetics slows down and the dye moieties progressively orient normal to the surface. Conversely, when the layer of l-PS layer is deposited on the strongly adsorbed layer of neat PS, both the dielectric strength and the SHG signal do not show any variation with time. This means that no adsorption takes place.


Assuntos
Espectroscopia Dielétrica/métodos , Polímeros/química , Adsorção , Microscopia de Força Atômica , Concentração Osmolar
20.
Nanoscale ; 13(27): 11593-11634, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34231627

RESUMO

In recent years, bioanalytical surface-enhanced Raman spectroscopy (SERS) has blossomed into a fast-growing research area. Owing to its high sensitivity and outstanding multiplexing ability, SERS is an effective analytical technique that has excellent potential in bioanalysis and diagnosis, as demonstrated by its increasing applications in vivo. SERS allows the rapid detection of molecular species based on direct and indirect strategies. Because it benefits from the tunable surface properties of nanostructures, it finds a broad range of applications with clinical relevance, such as biological sensing, drug delivery and live cell imaging assays. Of particular interest are early-stage-cancer detection and the fast detection of pathogens. Here, we present a comprehensive survey of SERS-based assays, from basic considerations to bioanalytical applications. Our main focus is on SERS-based pathogen detection methods as point-of-care solutions for early bacterial infection detection and chronic disease diagnosis. Additionally, various promising in vivo applications of SERS are surveyed. Furthermore, we provide a brief outlook of recent endeavours and we discuss future prospects and limitations for SERS, as a reliable approach for rapid and sensitive bioanalysis and diagnosis.


Assuntos
Nanoestruturas , Análise Espectral Raman , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA