Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 289(13): 9275-87, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24509848

RESUMO

Discoidin domain receptor 1 (DDR1) belongs to a unique family of receptor tyrosine kinases that signal in response to collagens. DDR1 undergoes autophosphorylation in response to collagen binding with a slow and sustained kinetics that is unique among members of the receptor tyrosine kinase family. DDR1 dimerization precedes receptor activation suggesting a structural inhibitory mechanism to prevent unwarranted phosphorylation. However, the mechanism(s) that maintains the autoinhibitory state of the DDR1 dimers is unknown. Here, we report that N-glycosylation at the Asn(211) residue plays a unique role in the control of DDR1 dimerization and autophosphorylation. Using site-directed mutagenesis, we found that mutations that disrupt the conserved (211)NDS N-glycosylation motif, but not other N-glycosylation sites (Asn(260), Asn(371), and Asn(394)), result in collagen I-independent constitutive phosphorylation. Mass spectrometry revealed that the N211Q mutant undergoes phosphorylation at Tyr(484), Tyr(520), Tyr(792), and Tyr(797). The N211Q traffics to the cell surface, and its ectodomain displays collagen I binding with an affinity similar to that of the wild-type DDR1 ectodomain. However, unlike the wild-type receptor, the N211Q mutant exhibits enhanced receptor dimerization and sustained activation upon ligand withdrawal. Taken together, these data suggest that N-glycosylation at the highly conserved (211)NDS motif evolved to act as a negative repressor of DDR1 phosphorylation in the absence of ligand. The presence of glycan moieties at that site may help to lock the collagen-binding domain in the inactive state and prevent unwarranted signaling by receptor dimers. These studies provide a novel insight into the structural mechanisms that regulate DDR activation.


Assuntos
Asparagina , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Colágeno Tipo I/farmacologia , Sequência Conservada , Receptor com Domínio Discoidina 1 , Endocitose/efeitos dos fármacos , Glicosilação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Multimerização Proteica , Estrutura Quaternária de Proteína , Receptores Proteína Tirosina Quinases/genética
2.
Int J Cancer ; 136(6): E508-20, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25155634

RESUMO

The epithelial-to-mesenchymal transition (EMT) process allows carcinoma cells to dissociate from the primary tumor thereby facilitating tumor cell invasion and metastasis. Ras-dependent hyperactive signaling is commonly associated with tumorigenesis, invasion, EMT, and metastasis. However, the downstream effectors by which Ras regulates EMT remain ill defined. In this study, we show that the H-Ras pathway leads to mesenchymal-like phenotypic changes in human breast epithelial cells by controlling the ZEB1/microRNA-200c axis. Moreover, H-Ras suppresses the expression of the discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine kinase, via ZEB1, thus identifying ZEB1 as a novel transcriptional repressor of DDR1. Mutation studies on the putative promoter of the DDR1 gene revealed that bipartite Z- and E-box elements play a key role in transcriptional repression of DDR1 in Hs578T and MDA-MB-231 breast carcinoma cell lines by ZEB1. Furthermore, we found an inverse correlation between ZEB1 and DDR1 expression in various cancer cell lines and in human breast carcinoma tissues. Consistently, overexpression of DDR1 reduced the invasive phenotype of mesenchymal-like triple-negative breast cancer cells in 3D cultures and in vivo. Thus, ZEB1's role in maintenance of EMT in breast carcinoma cells is mediated in part by its ability to suppress DDR1 expression and consequently contribute to the activation of the invasive phenotype. Taken together, our results unveil a novel H-Ras/ZEB1/DDR1 network that contributes to breast cancer progression in triple-negative breast cancers.


Assuntos
Mama/patologia , Transição Epitelial-Mesenquimal , Genes ras/fisiologia , Proteínas de Homeodomínio/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Receptores Mitogênicos/fisiologia , Fatores de Transcrição/fisiologia , Linhagem Celular Tumoral , Citoesqueleto/fisiologia , Receptores com Domínio Discoidina , Células Epiteliais/patologia , Feminino , Humanos , MicroRNAs/fisiologia , Morfogênese , Homeobox 1 de Ligação a E-box em Dedo de Zinco
3.
Breast Cancer Res Treat ; 150(1): 9-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25667101

RESUMO

Receptor kinases Discoidin Domain Receptors (DDRs) 1 and 2 are emerging as new therapeutic targets in breast cancer (BC). However, the expression of DDR proteins during BC progression and their association with BC subtypes remain poorly defined. Herein we report the first comprehensive immunohistochemical analyses of DDR protein expression in a wide range of breast tissues. DDR1 and DDR2 expression was investigated by immunohistochemistry in 218 samples of normal breast (n = 10), ductal carcinoma in situ (DCIS, n = 10), and invasive carcinomas (n = 198), arrayed in tissue microarrays with comprehensive clinical and follow-up information. Staining was evaluated for cell type, subcellular localization, percentage and intensity (scores 1-4), and association with disease subtype and outcome. In normal epithelium and DCIS, DDR1 was highly expressed, while DDR2 was negative in normal epithelium, and in DCIS it localized to cells at the epithelial-stromal interface. Of the 198 invasive carcinomas, DDR1 was high in 87 (44 %) and low in 103 (52 %), and DDR2 was high in 110 (56 %) and low in 87 (44 %). High DDR2 was associated with high tumor grade (P = 0.002), triple-negative subtype (TNBC) (P < 0.0001), and worse survival (P = 0.037). We discovered a novel concordant deregulation of DDR expression, with a DDR1(Low)/DDR2(High) profile significantly associated with TNBC, compared to luminal tumors (P = 0.012), and with worse overall survival. In conclusion, DDR2 upregulation occurs in DCIS, before stromal invasion, and may reflect epithelial-stromal cross-talk. A DDR1(Low)/DDR2(High) protein profile is associated with TNBC and may identify invasive carcinomas with worse prognosis.


Assuntos
Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Terapia Combinada , Receptores com Domínio Discoidina , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica , Prognóstico , Ligação Proteica , Receptores Proteína Tirosina Quinases/genética , Receptores Mitogênicos/genética , Fatores de Risco , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Carga Tumoral
4.
J Biol Chem ; 288(11): 7430-7437, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23335507

RESUMO

The discoidin domain receptors (DDRs) are receptor tyrosine kinases that recognize collagens as their ligands. DDRs display unique structural features and distinctive activation kinetics, which set them apart from other members of the kinase superfamily. DDRs regulate cell-collagen interactions in normal and pathological conditions and thus are emerging as major sensors of collagen matrices and potential novel therapeutic targets. New structural and biological information has shed light on the molecular mechanisms that regulate DDR signaling, turnover, and function. This minireview provides an overview of these areas of DDR research with the goal of fostering further investigation of these intriguing and unique receptors.


Assuntos
Regulação da Expressão Gênica , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/química , Animais , Colágeno/química , Receptores com Domínio Discoidina , Endocitose , Matriz Extracelular/metabolismo , Humanos , Cinética , Ligantes , Camundongos , Modelos Moleculares , Conformação Molecular , Peptídeo Hidrolases/química , Fosfotirosina/química , Estrutura Terciária de Proteína , Receptores Proteína Tirosina Quinases/química , Transdução de Sinais
5.
J Biol Chem ; 288(17): 12114-29, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23519472

RESUMO

The discoidin domain receptors (DDRs) are receptor tyrosine kinases that upon binding to collagens undergo receptor phosphorylation, which in turn activates signal transduction pathways that regulate cell-collagen interactions. We report here that collagen-dependent DDR1 activation is partly regulated by the proteolytic activity of the membrane-anchored collagenases, MT1-, MT2-, and MT3-matrix metalloproteinase (MMP). These collagenases cleave DDR1 and attenuate collagen I- and IV-induced receptor phosphorylation. This effect is not due to ligand degradation, as it proceeds even when the receptor is stimulated with collagenase-resistant collagen I (r/r) or with a triple-helical peptide harboring the DDR recognition motif in collagens. Moreover, the secreted collagenases MMP-1 and MMP-13 and the glycosylphosphatidylinositol-anchored membrane-type MMPs (MT4- and MT6-MMP) have no effect on DDR1 cleavage or activation. N-terminal sequencing of the MT1-MMP-mediated cleaved products and mutational analyses show that cleavage of DDR1 takes place within the extracellular juxtamembrane region, generating a membrane-anchored C-terminal fragment. Metalloproteinase inhibitor studies show that constitutive shedding of endogenous DDR1 in breast cancer HCC1806 cells is partly mediated by MT1-MMP, which also regulates collagen-induced receptor activation. Taken together, these data suggest a role for the collagenase of membrane-type MMPs in regulation of DDR1 cleavage and activation at the cell-matrix interface.


Assuntos
Colagenases/metabolismo , Proteólise , Receptores Proteína Tirosina Quinases/metabolismo , Motivos de Aminoácidos , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Colagenases/genética , Receptor com Domínio Discoidina 1 , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Humanos , Estrutura Terciária de Proteína , Receptores Proteína Tirosina Quinases/genética
6.
Cancer Metastasis Rev ; 31(1-2): 295-321, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22366781

RESUMO

Almost all human cancers display dysregulated expression and/or function of one or more receptor tyrosine kinases (RTKs). The strong causative association between altered RTK function and cancer progression has been translated into novel therapeutic strategies that target these cell surface receptors in cancer. Yet, the full spectrum of RTKs that may alter the oncogenic process is not completely understood. Accumulating evidence suggests that a unique set of RTKs known as the discoidin domain receptors (DDRs) play a key role in cancer progression by regulating the interactions of tumor cells with their surrounding collagen matrix. The DDRs are the only RTKs that specifically bind to and are activated by collagen. DDRs control cell and tissue homeostasis by acting as collagen sensors, transducing signals that regulate cell polarity, tissue morphogenesis, and cell differentiation. In cancer, DDRs are hijacked by tumor cells to disrupt normal cell-matrix communication and initiate pro-migratory and pro-invasive programs. Importantly, several cancer types exhibit DDR mutations, which are thought to alter receptor function and contribute to cancer progression. Other evidence suggests that the actions of DDRs in cancer are complex, either promoting or suppressing tumor cell behavior in a DDR type/isoform specific- and context-dependent manner. Thus, there is still a considerable gap in our knowledge of DDR actions in cancer tissues. This review summarizes and discusses the current knowledge on DDR expression and function in cancer. It is hoped that this effort will encourage more research into these poorly understood but unique RTKs, which have the potential of becoming novel therapeutic targets in cancer.


Assuntos
Neoplasias/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Animais , Colágeno/metabolismo , Receptores com Domínio Discoidina , Progressão da Doença , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Receptores Mitogênicos/antagonistas & inibidores , Receptores Mitogênicos/química , Receptores Mitogênicos/genética , Transdução de Sinais
7.
Virol J ; 5: 23, 2008 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-18267010

RESUMO

BACKGROUND: The ESCRT (endosomal sorting complex required for transport) machinery functions to sort cellular receptors into the lumen of the multivesicular body (MVB) prior to lysosomal degradation. ESCRT components can also be recruited by enveloped viruses to sites of viral assembly where they have been proposed to mediate viral egress. For example, HIV-1 budding is dependent on Gag-mediated recruitment of the cellular ESCRTs-I, -III, AIP1/Alix and Vps4 proteins. Viral recruitment of ESCRT proteins could therefore impact on host cell processes such as receptor downregulation. RESULTS: Here we show that downregulation of the HIV-1 co-receptor, CXCR4, by its ligand SDF-1, is ESCRT-I dependent. Expression of HIV-1 Gag attenuated downregulation of CXCR4, resulting in accumulation of undegraded receptors within intracellular compartments. The effect of Gag was dependent on an ESCRT-I interacting motif within the C-terminal p6 region of Gag. In contrast, PMA-induced downregulation of the HIV-1 receptor CD4 was independent of ESCRT-I and Vps4; HIV-1 Gag had no effect on this process. CONCLUSION: These results establish that the HIV-1 receptor, CD4, and co-receptor, CXCR4 are differentially regulated by ESCRT proteins. HIV-1 Gag selectively modulates protein sorting at the MVB, interfering with ESCRT-I dependent but not ESCRT-I independent processes.


Assuntos
Antígenos CD4/metabolismo , Receptores CXCR4/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular , Produtos do Gene gag do Vírus da Imunodeficiência Humana/fisiologia , Antígenos CD4/genética , Linhagem Celular , Regulação para Baixo , Endossomos/genética , Endossomos/metabolismo , Genes gag , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo
8.
Dev Cell ; 28(5): 520-33, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24636257

RESUMO

Molecular motors transport organelles to specific subcellular locations. Upon arrival at their correct locations, motors release organelles via unknown mechanisms. The yeast myosin V, Myo2, binds the vacuole-specific adaptor Vac17 to transport the vacuole from the mother cell to the bud. Here, we show that vacuole detachment from Myo2 occurs in multiple regulated steps along the entire pathway of vacuole transport. Detachment initiates in the mother cell with the phosphorylation of Vac17 that recruits the E3 ligase Dma1 to the vacuole. However, Dma1 recruitment also requires the assembly of the vacuole transport complex and is first observed after the vacuole enters the bud. Dma1 remains on the vacuole until the bud and mother vacuoles separate. Subsequently, Dma1 targets Vac17 for proteasomal degradation. Notably, we find that the termination of peroxisome transport also requires Dma1. We predict that this is a general mechanism that detaches myosin V from select cargoes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Organelas/metabolismo , Peroxissomos/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Western Blotting , Proteínas de Ciclo Celular/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Dados de Sequência Molecular , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
9.
J Cell Biol ; 181(1): 15-8, 2008 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-18391069

RESUMO

In budding yeast, the actin-based class V myosin motors, Myo2 and Myo4, transport virtually all organelles from mother to bud during cell division. Until recently, it appeared that mitochondria may be an exception, with studies showing that the Arp2/3 complex is required for their movement. However, several recent studies have proposed that Myo2 has a direct involvement in mitochondria inheritance. In this issue, Altmann et al. (Altmann, K., M. Frank, D. Neumann, S. Jakobs, and B. Westermann. 2008. J. Cell Biol. 181:119-130) provide the strongest support yet that Myo2 and its associated light chain Mlc1 function directly and significantly in both mitochondria-actin interactions and in the movement of mitochondria from mother to bud. The conflicting functions of Arp 2/3 and Myo2 may be reconciled by the existence of multiple pathways involved in mitochondrial transport.


Assuntos
Mitocôndrias/metabolismo , Movimento , Miosina Tipo V/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Divisão Celular , Modelos Biológicos , Modelos Moleculares , Miosina Tipo V/química , Miosina Tipo V/genética
10.
J Virol ; 78(22): 12386-94, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15507625

RESUMO

Many enveloped viruses use the ESCRT proteins of the cellular vacuolar protein sorting pathway for efficient egress from the cell. Recruitment of the ESCRT proteins by human immunodeficiency virus type 1 (HIV-1) Gag is required for HIV-1 particle budding and egress. ESCRT proteins normally function at endosomal membranes, where they facilitate the downregulation of mitogen-activated receptors such as EGF receptor (EGFR) through multivesicular body biogenesis. It is not known whether the Gag-mediated recruitment of ESCRT proteins functionally depletes the pool of these molecules that is available for the downregulation of EGFR. Here we show that the expression of HIV-1 Gag decreases the rate of EGFR downregulation, as assessed by decreases in the rates of (125)I-EGF and EGFR degradation. The effect of Gag was dependent on the presence of the TSG101 binding motif (PTAP) within the Gag C-terminal p6 domain. Cells expressing HIV-1 Gag retained more EGFR in late endosomes. This effect occurred when Gag was expressed alone from a heterologous promoter and when Gag expression was driven by the HIV-1 long terminal repeat within pHXB2DeltaBalD25S, a noninfectious lentiviral vector. Gag-expressing cells exhibited higher levels of activated mitogen-activated protein kinase for longer times after EGF addition than did cells that did not express HIV-1 Gag. These results indicate that HIV-1 Gag can impinge upon the functioning of the cellular vacuolar protein sorting pathway and reveal yet another facet of the intricate effects of HIV-1 infection on host cell physiology.


Assuntos
Receptores ErbB/metabolismo , Produtos do Gene gag/fisiologia , HIV-1/fisiologia , Animais , Células COS , Regulação para Baixo , Fator de Crescimento Epidérmico/metabolismo , Ligantes , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Transporte Proteico , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA