Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nat Rev Genet ; 24(5): 276-294, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36418462

RESUMO

RNA-binding proteins (RBPs) regulate essentially every event in the lifetime of an RNA molecule, from its production to its destruction. Whereas much has been learned about RNA sequence specificity and general functions of individual RBPs, the ways in which numerous RBPs instruct a much smaller number of effector molecules, that is, the core engines of RNA processing, as to where, when and how to act remain largely speculative. Here, we survey the known modes of communication between RBPs and their effectors with a particular focus on converging RBP-effector interactions and their roles in reducing the complexity of RNA networks. We discern the emerging unifying principles and discuss their utility in our understanding of RBP function, regulation of biological processes and contribution to human disease.


Assuntos
Processamento Pós-Transcricional do RNA , RNA , Humanos , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética
2.
Genes Dev ; 33(19-20): 1355-1360, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31439631

RESUMO

GIGYF (Grb10-interacting GYF [glycine-tyrosine-phenylalanine domain]) proteins coordinate with 4EHP (eIF4E [eukaryotic initiation factor 4E] homologous protein), the DEAD (Asp-Glu-Ala-Asp)-box helicase Me31B/DDX6, and mRNA-binding proteins to elicit transcript-specific repression. However, the underlying molecular mechanism remains unclear. Here, we report that GIGYF contains a motif necessary and sufficient for direct interaction with Me31B/DDX6. A 2.4 Å crystal structure of the GIGYF-Me31B complex reveals that this motif arranges into a coil connected to a ß hairpin on binding to conserved hydrophobic patches on the Me31B RecA2 domain. Structure-guided mutants indicate that 4EHP-GIGYF-DDX6 complex assembly is required for tristetraprolin-mediated down-regulation of an AU-rich mRNA, thus revealing the molecular principles of translational repression.


Assuntos
Proteínas de Transporte/química , RNA Helicases DEAD-box/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Regulação da Expressão Gênica/genética , Modelos Moleculares , Motivos de Aminoácidos , Animais , Proteínas de Transporte/genética , Linhagem Celular , Drosophila melanogaster/genética , Células HEK293 , Humanos , Ligação Proteica , Estrutura Quaternária de Proteína
3.
Genes Dev ; 31(11): 1147-1161, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28698298

RESUMO

The eIF4E homologous protein (4EHP) is thought to repress translation by competing with eIF4E for binding to the 5' cap structure of specific mRNAs to which it is recruited through interactions with various proteins, including the GRB10-interacting GYF (glycine-tyrosine-phenylalanine domain) proteins 1 and 2 (GIGYF1/2). Despite its similarity to eIF4E, 4EHP does not interact with eIF4G and therefore fails to initiate translation. In contrast to eIF4G, GIGYF1/2 bind selectively to 4EHP but not eIF4E. Here, we present crystal structures of the 4EHP-binding regions of GIGYF1 and GIGYF2 in complex with 4EHP, which reveal the molecular basis for the selectivity of the GIGYF1/2 proteins for 4EHP. Complementation assays in a GIGYF1/2-null cell line using structure-based mutants indicate that 4EHP requires interactions with GIGYF1/2 to down-regulate target mRNA expression. Our studies provide structural insights into the assembly of 4EHP-GIGYF1/2 repressor complexes and reveal that rather than merely facilitating 4EHP recruitment to transcripts, GIGYF1/2 proteins are required for repressive activity.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Mensageiro/genética , Proteínas de Transporte/genética , Linhagem Celular , Cristalização , Fator de Iniciação 4E em Eucariotos , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Ligação Proteica/genética , Estabilidade Proteica , Estrutura Quaternária de Proteína , Proteínas de Ligação ao Cap de RNA/química
4.
Mol Cell ; 64(3): 467-479, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773676

RESUMO

Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete for binding to the eIF4E dorsal surface via a shared canonical 4E-binding motif, but also contain auxiliary eIF4E-binding sequences, which were assumed to contact non-overlapping eIF4E surfaces. However, it is unknown how metazoan eIF4G auxiliary sequences bind eIF4E. Here, we describe crystal structures of human and Drosophila melanogaster eIF4E-eIF4G complexes, which unexpectedly reveal that the eIF4G auxiliary sequences bind to the lateral surface of eIF4E, using a similar mode to that of 4E-BPs. Our studies provide a molecular model of the eIF4E-eIF4G complex, shed light on the competition mechanism of 4E-BPs, and enable the rational design of selective eIF4G inhibitors to dampen dysregulated translation in disease.


Assuntos
Drosophila melanogaster/metabolismo , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação Eucariótico 4G/química , Iniciação Traducional da Cadeia Peptídica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Drosophila melanogaster/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
5.
RNA ; 27(4): 445-464, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397688

RESUMO

Pumilio paralogs, PUM1 and PUM2, are sequence-specific RNA-binding proteins that are essential for vertebrate development and neurological functions. PUM1&2 negatively regulate gene expression by accelerating degradation of specific mRNAs. Here, we determined the repression mechanism and impact of human PUM1&2 on the transcriptome. We identified subunits of the CCR4-NOT (CNOT) deadenylase complex required for stable interaction with PUM1&2 and to elicit CNOT-dependent repression. Isoform-level RNA sequencing revealed broad coregulation of target mRNAs through the PUM-CNOT repression mechanism. Functional dissection of the domains of PUM1&2 identified a conserved amino-terminal region that confers the predominant repressive activity via direct interaction with CNOT. In addition, we show that the mRNA decapping enzyme, DCP2, has an important role in repression by PUM1&2 amino-terminal regions. Our results support a molecular model of repression by human PUM1&2 via direct recruitment of CNOT deadenylation machinery in a decapping-dependent mRNA decay pathway.


Assuntos
RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Receptores CCR4/genética , Fatores de Transcrição/genética , Transcriptoma , Monofosfato de Adenosina , Sequência de Bases , Sítios de Ligação , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Células HCT116 , Humanos , Luciferases/genética , Luciferases/metabolismo , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores CCR4/metabolismo , Fatores de Transcrição/metabolismo
6.
Nucleic Acids Res ; 48(4): 1843-1871, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31863588

RESUMO

Pumilio is an RNA-binding protein that represses a network of mRNAs to control embryogenesis, stem cell fate, fertility and neurological functions in Drosophila. We sought to identify the mechanism of Pumilio-mediated repression and find that it accelerates degradation of target mRNAs, mediated by three N-terminal Repression Domains (RDs), which are unique to Pumilio orthologs. We show that the repressive activities of the Pumilio RDs depend on specific subunits of the Ccr4-Not (CNOT) deadenylase complex. Depletion of Pop2, Not1, Not2, or Not3 subunits alleviates Pumilio RD-mediated repression of protein expression and mRNA decay, whereas depletion of other CNOT components had little or no effect. Moreover, the catalytic activity of Pop2 deadenylase is important for Pumilio RD activity. Further, we show that the Pumilio RDs directly bind to the CNOT complex. We also report that the decapping enzyme, Dcp2, participates in repression by the N-terminus of Pumilio. These results support a model wherein Pumilio utilizes CNOT deadenylase and decapping complexes to accelerate destruction of target mRNAs. Because the N-terminal RDs are conserved in mammalian Pumilio orthologs, the results of this work broadly enhance our understanding of Pumilio function and roles in diseases including cancer, neurodegeneration and epilepsy.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Animais , Drosophila melanogaster/genética , Ligação Proteica , Domínios Proteicos/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética
7.
Nucleic Acids Res ; 47(17): 9282-9295, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31340047

RESUMO

XRN1 is the major cytoplasmic exoribonuclease in eukaryotes, which degrades deadenylated and decapped mRNAs in the last step of the 5'-3' mRNA decay pathway. Metazoan XRN1 interacts with decapping factors coupling the final stages of decay. Here, we reveal a direct interaction between XRN1 and the CCR4-NOT deadenylase complex mediated by a low-complexity region in XRN1, which we term the 'C-terminal interacting region' or CIR. The CIR represses reporter mRNA deadenylation in human cells when overexpressed and inhibits CCR4-NOT and isolated CAF1 deadenylase activity in vitro. Through complementation studies in an XRN1-null cell line, we dissect the specific contributions of XRN1 domains and regions toward decay of an mRNA reporter. We observe that XRN1 binding to the decapping activator EDC4 counteracts the dominant negative effect of CIR overexpression on decay. Another decapping activator PatL1 directly interacts with CIR and alleviates the CIR-mediated inhibition of CCR4-NOT activity in vitro. Ribosome profiling revealed that XRN1 loss impacts not only on mRNA levels but also on the translational efficiency of many cellular transcripts likely as a consequence of incomplete decay. Our findings reveal an additional layer of direct interactions in a tightly integrated network of factors mediating deadenylation, decapping and 5'-3' exonucleolytic decay.


Assuntos
Proteínas de Ligação a DNA/genética , Exorribonucleases/genética , Proteínas Associadas aos Microtúbulos/genética , Capuzes de RNA/genética , Estabilidade de RNA/genética , Endorribonucleases/genética , Humanos , Complexos Multiproteicos/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Proteínas/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Receptores CCR4/genética , Proteínas Repressoras/genética , Transativadores/genética , Fatores de Transcrição/genética
8.
Biochemistry ; 59(42): 4131-4142, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33059440

RESUMO

Proteogenomic identification of translated small open reading frames in humans has revealed thousands of microproteins, or polypeptides of fewer than 100 amino acids, that were previously invisible to geneticists. Hundreds of microproteins have been shown to be essential for cell growth and proliferation, and many regulate macromolecular complexes. One such regulatory microprotein is NBDY, a 68-amino acid component of the human cytoplasmic RNA decapping complex. Heterologously expressed NBDY was previously reported to regulate cytoplasmic ribonucleoprotein granules known as P-bodies and reporter gene stability, but the global effect of endogenous NBDY on the cellular transcriptome remained undefined. In this work, we demonstrate that endogenous NBDY directly interacts with the human RNA decapping complex through EDC4 and DCP1A and localizes to P-bodies. Global profiling of RNA stability changes in NBDY knockout (KO) cells reveals dysregulated stability of more than 1400 transcripts. DCP2 substrate transcript half-lives are both increased and decreased in NBDY KO cells, which correlates with 5' UTR length. NBDY deletion additionally alters the stability of non-DCP2 target transcripts, possibly as a result of downregulated expression of nonsense-mediated decay factors in NBDY KO cells. We present a comprehensive model of the regulation of RNA stability by NBDY.


Assuntos
Capuzes de RNA/química , Capuzes de RNA/metabolismo , Células HEK293 , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/genética , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Fases de Leitura Aberta/genética , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo
9.
EMBO J ; 35(9): 974-90, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-26968986

RESUMO

Nanos proteins repress the expression of target mRNAs by recruiting effector complexes through non-conserved N-terminal regions. In vertebrates, Nanos proteins interact with the NOT1 subunit of the CCR4-NOT effector complex through a NOT1 interacting motif (NIM), which is absent in Nanos orthologs from several invertebrate species. Therefore, it has remained unclear whether the Nanos repressive mechanism is conserved and whether it also involves direct interactions with the CCR4-NOT deadenylase complex in invertebrates. Here, we identify an effector domain (NED) that is necessary for the Drosophila melanogaster (Dm) Nanos to repress mRNA targets. The NED recruits the CCR4-NOT complex through multiple and redundant binding sites, including a central region that interacts with the NOT module, which comprises the C-terminal domains of NOT1-3. The crystal structure of the NED central region bound to the NOT module reveals an unanticipated bipartite binding interface that contacts NOT1 and NOT3 and is distinct from the NIM of vertebrate Nanos. Thus, despite the absence of sequence conservation, the N-terminal regions of Nanos proteins recruit CCR4-NOT to assemble analogous repressive complexes.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonucleases/metabolismo , Animais , Cristalografia por Raios X , Drosophila melanogaster , Ligação Proteica , Conformação Proteica , RNA Mensageiro/biossíntese
10.
Nucleic Acids Res ; 46(13): 6893-6908, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30053226

RESUMO

The interaction of the eukaryotic initiation factor 4G (eIF4G) with the cap-binding protein eIF4E initiates cap-dependent translation and is regulated by the 4E-binding proteins (4E-BPs), which compete with eIF4G to repress translation. Metazoan eIF4G and 4E-BPs interact with eIF4E via canonical and non-canonical motifs that bind to the dorsal and lateral surface of eIF4E in a bipartite recognition mode. However, previous studies pointed to mechanistic differences in how fungi and metazoans regulate protein synthesis. We present crystal structures of the yeast eIF4E bound to two yeast 4E-BPs, p20 and Eap1p, as well as crystal structures of a fungal eIF4E-eIF4G complex. We demonstrate that the core principles of molecular recognition of eIF4E are in fact highly conserved among translational activators and repressors in eukaryotes. Finally, we reveal that highly specialized structural motifs do exist and serve to modulate the affinity of protein-protein interactions that regulate cap-dependent translation initiation in fungi.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação Eucariótico 4G/química , Regulação Fúngica da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Fatores de Transcrição/química , Motivos de Aminoácidos , Ligação Competitiva , Chaetomium/genética , Sequência Conservada , Cristalografia por Raios X , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Análogos de Capuz de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Especificidade da Espécie , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
11.
J Am Chem Soc ; 141(1): 370-387, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30497259

RESUMO

Highly proficient, promiscuous enzymes can be springboards for functional evolution, able to avoid loss of function during adaptation by their capacity to promote multiple reactions. We employ a systematic comparative study of structure, sequence, and substrate specificity to track the evolution of specificity and reactivity between promiscuous members of clades of the alkaline phosphatase (AP) superfamily. Construction of a phylogenetic tree of protein sequences maps out the likely transition zone between arylsulfatases (ASs) and phosphonate monoester hydrolases (PMHs). Kinetic analysis shows that all enzymes characterized have four chemically distinct phospho- and sulfoesterase activities, with rate accelerations ranging from 1011- to 1017-fold for their primary and 109- to 1012-fold for their promiscuous reactions, suggesting that catalytic promiscuity is widespread in the AP-superfamily. This functional characterization and crystallography reveal a novel class of ASs that is so similar in sequence to known PMHs that it had not been recognized as having diverged in function. Based on analysis of snapshots of catalytic promiscuity "in transition", we develop possible models that would allow functional evolution and determine scenarios for trade-off between multiple activities. For the new ASs, we observe largely invariant substrate specificity that would facilitate the transition from ASs to PMHs via trade-off-free molecular exaptation, that is, evolution without initial loss of primary activity and specificity toward the original substrate. This ability to bypass low activity generalists provides a molecular solution to avoid adaptive conflict.


Assuntos
Fosfatase Alcalina/metabolismo , Evolução Molecular , Fosfatase Alcalina/química , Bactérias/enzimologia , Domínio Catalítico , Cinética , Modelos Moleculares , Filogenia , Alinhamento de Sequência , Especificidade por Substrato
12.
J Struct Biol ; 204(3): 388-395, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30367941

RESUMO

The CCR4-NOT complex plays a central role in the regulation of gene expression and degradation of messenger RNAs. The multisubunit complex assembles on the NOT1 protein, which acts as a 'scaffold' and is highly conserved in eukaryotes. NOT1 consists of a series of helical domains that serve as docking sites for other CCR4-NOT subunits. We describe a crystal structure of a connector domain of NOT1 from the thermophilic fungus Chaetomium thermophilum (Ct). Comparative structural analysis indicates that this domain adopts a MIF4G-like fold and we have termed it the MIF4G-C domain. Solution scattering studies indicate that the human MIF4G-C domain likely adopts a very similar fold to the Ct MIF4G-C. MIF4G domains have been described to mediate interactions with DEAD-box helicases such as DDX6. However, comparison of the interfaces of the MIF4G-C with the MIF4G domain of NOT1 that interacts with DDX6 reveals key structural differences that explain why the MIF4G-C does not bind DDX6. We further show that the human MIF4G-C does not interact stably with other subunits of the CCR4-NOT complex. The structural conservation of the MIF4G-C domain suggests that it may have an important but presently undefined role in the CCR4-NOT complex.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Fúngicas/química , Domínios Proteicos , Fatores de Transcrição/química , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/genética , Chaetomium/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
EMBO J ; 33(14): 1514-26, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24872509

RESUMO

The conserved eukaryotic Pan2-Pan3 deadenylation complex shortens cytoplasmic mRNA 3' polyA tails to regulate mRNA stability. Although the exonuclease activity resides in Pan2, efficient deadenylation requires Pan3. The mechanistic role of Pan3 is unclear. Here, we show that Pan3 binds RNA directly both through its pseudokinase/C-terminal domain and via an N-terminal zinc finger that binds polyA RNA specifically. In contrast, isolated Pan2 is unable to bind RNA. Pan3 binds to the region of Pan2 that links its N-terminal WD40 domain to the C-terminal part that contains the exonuclease, with a 2:1 stoichiometry. The crystal structure of the Pan2 linker region bound to a Pan3 homodimer shows how the unusual structural asymmetry of the Pan3 dimer is used to form an extensive high-affinity interaction. This binding allows Pan3 to supply Pan2 with substrate polyA RNA, facilitating efficient mRNA deadenylation by the intact Pan2-Pan3 complex.


Assuntos
Chaetomium/química , Exorribonucleases/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Cromatografia de Afinidade , Clonagem Molecular , Ensaio de Desvio de Mobilidade Eletroforética , Exorribonucleases/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Complexos Multiproteicos/química , Proteínas de Ligação a Poli(A)/metabolismo , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Sefarose , Análise de Sequência de DNA
14.
Nature ; 473(7348): 540-3, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21532589

RESUMO

Molecular replacement procedures, which search for placements of a starting model within the crystallographic unit cell that best account for the measured diffraction amplitudes, followed by automatic chain tracing methods, have allowed the rapid solution of large numbers of protein crystal structures. Despite extensive work, molecular replacement or the subsequent rebuilding usually fail with more divergent starting models based on remote homologues with less than 30% sequence identity. Here we show that this limitation can be substantially reduced by combining algorithms for protein structure modelling with those developed for crystallographic structure determination. An approach integrating Rosetta structure modelling with Autobuild chain tracing yielded high-resolution structures for 8 of 13 X-ray diffraction data sets that could not be solved in the laboratories of expert crystallographers and that remained unsolved after application of an extensive array of alternative approaches. We estimate that the new method should allow rapid structure determination without experimental phase information for over half the cases where current methods fail, given diffraction data sets of better than 3.2 Å resolution, four or fewer copies in the asymmetric unit, and the availability of structures of homologous proteins with >20% sequence identity.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Proteínas/química , Homologia Estrutural de Proteína , Cristalografia por Raios X , Bases de Dados de Proteínas , Elétrons , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
15.
Nucleic Acids Res ; 43(3): 1927-36, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25618852

RESUMO

The Mex67:Mtr2 complex is the principal yeast nuclear export factor for bulk mRNA and also contributes to ribosomal subunit export. Mex67 is a modular protein constructed from four domains (RRM, LRR, NTF2-like and UBA) that have been thought to be joined by flexible linkers like beads on a string, with the RRM and LRR domains binding RNAs and the NTF2-like and UBA domains binding FG-nucleoporins to facilitate movement through nuclear pores. Here, we show that the NTF2-like domain from Saccharomyces cerevisiae Mex67:Mtr2 also contributes to RNA binding. Moreover, the 3.3 Å resolution crystal structure of the Mex67(ΔUBA):Mtr2 complex, supplemented with small angle X-ray scattering data, indicated that the LRR domain has a defined spatial relationship to the Mex67(NTF2L):Mtr2 region. Conversely, the RRM domain and especially the UBA domain are more mobile. The conformation assumed by the LRR and NTF2-like domains results in clusters of positively-charged residues on each becoming arranged to form a continuous interface for binding RNA on the opposite side of the complex to the region that interacts with FG-nucleoporins to facilitate passage through nuclear pores.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas de Transporte Nucleocitoplasmático/química , Ligação Proteica , Proteínas de Ligação a RNA/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos
16.
Nucleic Acids Res ; 43(3): 1883-93, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25628361

RESUMO

The NXF1:NXT1 complex (also known as TAP:p15) is a general mRNA nuclear export factor that is conserved from yeast to humans. NXF1 is a modular protein constructed from four domains (RRM, LRR, NTF2-like and UBA domains). It is currently unclear how NXF1:NXT1 binds transcripts and whether there is higher organization of the NXF1 domains. We report here the 3.4 Å resolution crystal structure of the first three domains of human NXF1 together with NXT1 that has two copies of the complex in the asymmetric unit arranged to form an intimate domain-swapped dimer. In this dimer, the linkers between the NXF1 LRR and NTF2-like domains interact with NXT1, generating a 2-fold symmetric platform in which the RNA-binding RRM, LRR and NTF2-like domains are arranged on one face. In addition to bulk transcripts, NXF1:NXT1 also facilitates the export of unspliced retroviral genomic RNA from simple type-D retroviruses such as SRV-1 that contain a constitutive transport element (CTE), a cis-acting 2-fold symmetric RNA stem-loop motif. Complementary structural, biochemical and cellular techniques indicated that the formation of a symmetric RNA binding platform generated by dimerization of NXF1:NXT1 facilitates the recognition of CTE-RNA and promotes its nuclear export.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Retroviridae/genética , Transporte Biológico , Cristalografia por Raios X , Dimerização , Células HEK293 , Humanos , Modelos Moleculares , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Ligação a RNA/química
17.
Nature ; 464(7286): 232-6, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20118915

RESUMO

Integrase is an essential retroviral enzyme that binds both termini of linear viral DNA and inserts them into a host cell chromosome. The structure of full-length retroviral integrase, either separately or in complex with DNA, has been lacking. Furthermore, although clinically useful inhibitors of HIV integrase have been developed, their mechanism of action remains speculative. Here we present a crystal structure of full-length integrase from the prototype foamy virus in complex with its cognate DNA. The structure shows the organization of the retroviral intasome comprising an integrase tetramer tightly associated with a pair of viral DNA ends. All three canonical integrase structural domains are involved in extensive protein-DNA and protein-protein interactions. The binding of strand-transfer inhibitors displaces the reactive viral DNA end from the active site, disarming the viral nucleoprotein complex. Our findings define the structural basis of retroviral DNA integration, and will allow modelling of the HIV-1 intasome to aid in the development of antiretroviral drugs.


Assuntos
DNA Viral/metabolismo , Integrases/química , Modelos Moleculares , Retroviridae/enzimologia , Retroviridae/genética , Domínio Catalítico , HIV-1/enzimologia , HIV-1/genética , Integrases/metabolismo , Estrutura Terciária de Proteína
18.
Nucleic Acids Res ; 42(10): 6686-97, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24705649

RESUMO

The conserved Sac3:Thp1:Sem1:Sus1:Cdc31 (TREX2) complex binds to nuclear pore complexes (NPCs) and, in addition to integrating mRNA nuclear export with preceding steps in the gene expression pathway, facilitates re-positioning of highly regulated actively transcribing genes (such as GAL1) to NPCs. Although TREX2 is thought to bind NPC protein Nup1, defining the precise role of this interaction has been frustrated by the complex pleiotropic phenotype exhibited by nup1Δ strains. To provide a structural framework for understanding the binding of TREX2 to NPCs and its function in the gene expression pathway, we have determined the structure of the Nup1:TREX2 interaction interface and used this information to engineer a Sac3 variant that impairs NPC binding while not compromising TREX2 assembly. This variant inhibited the NPC association of both de-repressed and activated GAL1 and also produced mRNA export and growth defects. These results indicate that the TREX2:Nup1 interaction facilitates the efficient nuclear export of bulk mRNA together with the re-positioning of GAL1 to NPCs that is required for transcriptional control that is mediated by removal of SUMO from repressors by NPC-bound Ulp1.


Assuntos
Galactoquinase/genética , Complexo de Proteínas Formadoras de Poros Nucleares/química , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Porinas/química , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Modelos Moleculares , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Porinas/genética , Porinas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transporte de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Nucleic Acids Res ; 42(1): 672-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24071581

RESUMO

The yeast poly(A) RNA binding protein, Nab2, facilitates poly(A) tail length regulation together with targeting transcripts to nuclear pores and their export to the cytoplasm. Nab2 binds polyadenosine RNA primarily through a tandem repeat of CCCH Zn fingers. We report here the 2.15 Å resolution crystal structure of Zn fingers 3-5 of Chaetomium thermophilum Nab2 bound to polyadenosine RNA and establish the structural basis for the molecular recognition of adenosine ribonucleotides. Zn fingers 3 and 5 each bind two adenines, whereas finger 4 binds only one. In each case, the purine ring binds in a surface groove, where it stacks against an aromatic side chain, with specificity being provided by a novel pattern of H-bonds, most commonly between purine N6 and a Zn-coordinated cysteine supplemented by H-bonds between purine N7 and backbone amides. Residues critical for adenine binding are conserved between species and provide a code that allows prediction of finger-binding stoichiometry based on their sequence. Moreover, these results indicate that, in addition to poly(A) tails, Nab2 can also recognize sequence motifs elsewhere in transcripts in which adenosines are placed at key positions, consistent with its function in mRNP organization and compaction as well as poly(A) tail length regulation.


Assuntos
Poli A/química , Proteínas de Ligação a RNA/química , RNA/química , Dedos de Zinco , Adenosina/química , Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Chaetomium , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Transporte Nucleocitoplasmático/química , Poli A/metabolismo , Polímeros/química , Polímeros/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência
20.
J Biol Chem ; 289(2): 654-68, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24265315

RESUMO

Upon activation of Toll-like receptors (TLRs), cytoplasmic Toll/interleukin-1 receptor (TIR) domains of the receptors undergo homo- or heterodimerization. This in turn leads to the recruitment of adaptor proteins, activation of transcription factors, and the secretion of pro-inflammatory cytokines. Recent studies have described the TIR domain-containing protein from Brucella melitensis, TcpB (BtpA/Btp1), to be involved in virulence and suppression of host innate immune responses. TcpB interferes with TLR4 and TLR2 signaling pathways by a mechanism that remains controversial. In this study, we show using co-immunoprecipitation analyses that TcpB interacts with MAL, MyD88, and TLR4 but interferes only with the MAL-TLR4 interaction. We present the crystal structure of the TcpB TIR domain, which reveals significant structural differences in the loop regions compared with other TIR domain structures. We demonstrate that TcpB forms a dimer in solution, and the crystal structure reveals the dimerization interface, which we validate by mutagenesis and biophysical studies. Our study advances the understanding of the molecular mechanisms of host immunosuppression by bacterial pathogens.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Estrutura Terciária de Proteína , Receptor 4 Toll-Like/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Brucella melitensis/genética , Brucella melitensis/metabolismo , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores de Interleucina-1/metabolismo , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Receptor 4 Toll-Like/genética , Fatores de Virulência/genética , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA