Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nanotechnology ; 32(32)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33892482

RESUMO

Conventional chemotherapy used against cancer is mostly limited due to their non-targeted nature, affecting normal tissue and causing undesirable toxic effects to the affected tissue. With the aim of improving these treatments both therapeutically and in terms of their safety, numerous studies are currently being carried out using nanoparticles (NPs) as a vector combining tumor targeting and carrying therapeutic tools. In this context, it appears that nucleolin, a molecule over-expressed on the surface of tumor cells, is an interesting therapeutic target. Several ligands, antagonists of nucleolin of various origins, such as AS1411, the F3 peptide and the multivalent pseudopeptide N6L have been developed and studied as therapeutic tools against cancer. Over the last ten years or so, numerous studies have been published demonstrating that these antagonists can be used as tumor targeting agents with NPs from various origins. Focusing on nucleolin ligands, the aim of this article is to review the literature recently published or under experimentation in our research team to evaluate the efficacy and future development of these tools as anti-tumor agents.


Assuntos
Antineoplásicos/uso terapêutico , Aptâmeros de Nucleotídeos/uso terapêutico , Neoplasias/tratamento farmacológico , Oligodesoxirribonucleotídeos/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Peptídeos/uso terapêutico , Fosfoproteínas/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Antineoplásicos/química , Aptâmeros de Nucleotídeos/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Expressão Gênica , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Humanos , Ligantes , Terapia de Alvo Molecular/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Oligodesoxirribonucleotídeos/química , Fragmentos de Peptídeos/química , Peptídeos/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Nanomedicina Teranóstica/métodos , Nucleolina
2.
Arterioscler Thromb Vasc Biol ; 39(9): 1843-1858, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31315435

RESUMO

Objective Weibel-Palade bodies (WPBs) are endothelial cell (EC)-specific organelles formed by vWF (von Willebrand factor) polymerization and that contain the proangiogenic factor Ang-2 (angiopoietin-2). WPB exocytosis has been shown to be implicated for vascular repair and inflammatory responses. Here, we investigate the role of WPBs during angiogenesis and vessel stabilization. Approach and Results WPB density in ECs decreased at the angiogenic front of retinal vascular network during development and neovascularization compared with stable vessels. In vitro, VEGF (vascular endothelial growth factor) induced a VEGFR-2 (vascular endothelial growth factor receptor-2)-dependent exocytosis of WPBs that contain Ang-2 and consequently the secretion of vWF and Ang-2. Blocking VEGF-dependant WPB exocytosis and Ang-2 secretion promoted pericyte migration toward ECs. Pericyte migration was inhibited by adding recombinant Ang-2 or by silencing Ang-1 (angiopoietin-1) or Tie2 (angiopoietin-1 receptor) in pericytes. Consistently, in vivo anti-VEGF treatment induced accumulation of WPBs in retinal vessels because of the inhibition of WPB exocytosis and promoted the increase of pericyte coverage of retinal vessels during angiogenesis. In tumor angiogenesis, depletion of WPBs in vWF knockout tumor-bearing mice promoted an increase of tumor angiogenesis and a decrease of pericyte coverage of tumor vessels. By another approach, normalized tumor vessels had higher WPB density. Conclusions We demonstrate that WPB exocytosis and Ang-2 secretion are regulated during angiogenesis to limit pericyte coverage of remodeling vessels by disrupting Ang-1/Tie2 autocrine signaling in pericytes.


Assuntos
Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Pericitos/fisiologia , Corpos de Weibel-Palade/fisiologia , Angiopoietina-2/fisiologia , Animais , Células Cultivadas , Células Endoteliais/fisiologia , Exocitose , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/irrigação sanguínea , Retina/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/fisiologia
3.
Biochim Biophys Acta ; 1840(8): 2581-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24608032

RESUMO

BACKGROUND: Elevated levels of EMMPRIN/CD147 in cancer tissues have been correlated with tumor progression but the regulation of its expression is not yet understood. Here, the regulation of EMMPRIN expression was investigated in testicular germ cell tumor (TGCTs) cell lines. METHODS: EMMPRIN expression in seminoma JKT-1 and embryonal carcinoma NT2/D1 cell lines was determined by Western blot, immunofluorescence and qRT-PCR. Membrane vesicles (MVs) secreted from these cells, treated or not with EMMPRIN siRNA, were isolated by differential centrifugations of their conditioned medium. MMP-2 was analyzed by zymography and qRT-PCR. RESULTS: The more aggressive embryonic carcinoma NT2/D1 cells expressed more EMMPRIN mRNA than the seminoma JKT-1 cells, but surprisingly contained less EMMPRIN protein, as determined by immunoblotting and immunostaining. The protein/mRNA discrepancy was not due to accelerated protein degradation in NT2/D1 cells, but by the secretion of EMMPRIN within MVs, as the vesicles released from NT2/D1 contained considerably more EMMPRIN than those released from JKT-1. EMMPRIN-containing MVs obtained from NT2/D1, but not from EMMPRIN-siRNA treated NT2/D1, increased MMP-2 production in fibroblasts to a greater extent than those from JKT-1 cells. CONCLUSION AND GENERAL SIGNIFICANCE: The data presented show that the more aggressive embryonic carcinoma cells synthesize more EMMPRIN than seminoma cells, but which they preferentially target to secreted MVs, unlike seminoma cells which retain EMMPRIN within the cell membrane. This cellular event points to a mechanism by which EMMPRIN expressed by malignant testicular cells can exert its MMP inducing effect on distant cells within the tumor microenvironment to promote tumor invasion. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.


Assuntos
Basigina/metabolismo , Comunicação Celular , Membrana Celular/metabolismo , Metaloproteinase 2 da Matriz/biossíntese , Neoplasias Embrionárias de Células Germinativas/enzimologia , Neoplasias Embrionárias de Células Germinativas/patologia , Vesículas Secretórias/metabolismo , Neoplasias Testiculares/enzimologia , Neoplasias Testiculares/patologia , Basigina/genética , Linhagem Celular Tumoral , Fibroblastos/enzimologia , Fibroblastos/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Microdomínios da Membrana/metabolismo , Neoplasias Embrionárias de Células Germinativas/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Estromais/patologia , Neoplasias Testiculares/genética
4.
Am J Pathol ; 179(3): 1278-86, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21777561

RESUMO

Dry eye is a common disease that develops as a result of alteration of tear fluid, leading to osmotic stress and a perturbed epithelial barrier. Matrix metalloproteinase-9 (MMP-9) may be important in dry eye disease, as its genetic knockout conferred resistance to the epithelial disruption. We show that extracellular matrix metalloproteinase inducer (EMMPRIN; also termed CD147), an inducer of MMP expression, participates in the pathogenesis of dry eye through MMP-mediated cleavage of occludin, an important component of tight junctions. EMMPRIN expression was increased on the ocular surface of dry eye patients and correlated with those of MMP-9. High osmolarity in cell culture, mimicking dry eye conditions, increased both EMMPRIN and MMP-9 and resulted in the disruption of epithelial junctions through the cleavage of occludin. Exogenously added recombinant EMMPRIN had similar effects that were abrogated in the presence of the MMP inhibitor marimastat. Membrane occludin immunostaining was markedly increased in the apical corneal epithelium of both EMMPRIN and MMP-9 knock-out mice. Furthermore, an inverse correlation between EMMPRIN and occludin membrane staining was consistently observed both in vitro and in vivo as a function of corneal epithelial cells differentiation. These data suggest a possible role of EMMPRIN in regulating the amount of occludin at the cell surface in homeostasis beyond pathological situations such as dry eye disease, and EMMPRIN may be essential for the formation and maintenance of organized epithelial structure.


Assuntos
Basigina/farmacologia , Síndromes do Olho Seco/etiologia , Inibidores de Metaloproteinases de Matriz , Proteínas de Membrana/efeitos dos fármacos , Animais , Basigina/metabolismo , Diferenciação Celular , Síndromes do Olho Seco/metabolismo , Epitélio Corneano/efeitos dos fármacos , Homeostase , Humanos , Camundongos , Camundongos Knockout , Ocludina , Concentração Osmolar , Proteínas Recombinantes/farmacologia
5.
Cancers (Basel) ; 13(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203710

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and resistant cancer with no available effective therapy. We have previously demonstrated that nucleolin targeting by N6L impairs tumor growth and normalizes tumor vessels in PDAC mouse models. Here, we investigated new pathways that are regulated by nucleolin in PDAC. We found that N6L and nucleolin interact with ß-catenin. We found that the Wnt/ß-catenin pathway is activated in PDAC and is necessary for tumor-derived 3D growth. N6L and nucleolin loss of function induced by siRNA inhibited Wnt pathway activation by preventing ß-catenin stabilization in PDAC cells. N6L also inhibited the growth and the activation of the Wnt/ß-catenin pathway in vivo in mice and in 3D cultures derived from MIA PaCa2 tumors. On the other hand, nucleolin overexpression increased ß-catenin stabilization. In conclusion, in this study, we identified ß-catenin as a new nucleolin interactor and suggest that the Wnt/ß-catenin pathway could be a new target of the nucleolin antagonist N6L in PDAC.

6.
FASEB J ; 22(4): 1144-54, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17965264

RESUMO

Extracellular matrix metalloproteinase inducer (EMMPRIN) is a cell surface glycoprotein enriched on tumor cells and normal epithelia. It is mainly known for its ability to induce matrix metalloproteinase production in fibroblasts following epithelial-stromal interaction. We sought to examine whether EMMPRIN has a broader role promoting fibroblast-to-myofibroblast differentiation. Because alpha-smooth muscle actin (alphaSMA) is considered a marker of this differentiation process, we analyzed the effect of EMMPRIN on its expression in corneal and skin fibroblasts by Western blots, immunocytochemistry, and a functional assay of collagen lattice contraction. Increasing EMMPRIN expression by cDNA transfection or by treatment with exogenously added recombinant EMMPRIN resulted in an up-regulation of alphaSMA expression. EMMPRIN also increased the contractile properties of the treated fibroblasts as demonstrated by the immunohistochemical appearance of stress fibers and by the accelerated contraction of fibroblast-embedded collagen lattices. Blocking EMMPRIN expression by small interfering RNA inhibited alphaSMA and collagen gel contraction induced not only by EMMPRIN but also by transforming growth factor-beta, a major mediator of myofibroblast differentiation that also regulated EMMPRIN expression. These findings, combined with the fact that EMMPRIN and alphaSMA colocalized to the same cells in the stroma of pathological corneas, expand on the mechanism by which EMMPRIN remodels extracellular matrix during wound healing and cancer.


Assuntos
Actinas/metabolismo , Basigina/metabolismo , Colágeno/fisiologia , Fibroblastos/citologia , Músculo Liso/metabolismo , Basigina/análise , Diferenciação Celular , Linhagem Celular , Substância Própria/metabolismo , Humanos , Imuno-Histoquímica , Contração Muscular , Músculo Liso/citologia , Fator de Crescimento Transformador beta/metabolismo
7.
Breast Cancer Res ; 10(6): R100, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19055748

RESUMO

INTRODUCTION: Snail, a family of transcriptional repressors implicated in cell movement, has been correlated with tumour invasion. The Plasminogen Activation (PA) system, including urokinase plasminogen activator (uPA), its receptor and its inhibitor, plasminogen activator inhibitor type 1(PAI-1), also plays a key role in cancer invasion and metastasis, either through proteolytic degradation or by non-proteolytic modulation of cell adhesion and migration. Thus, Snail and the PA system are both over-expressed in cancer and influence this process. In this study we aimed to determine if the activity of SNAI1 (a member of the Snail family) is correlated with expression of the PA system components and how this correlation can influence tumoural cell migration. METHODS: We compared the invasive breast cancer cell-line MDA-MB-231 expressing SNAI1 (MDA-mock) with its derived clone expressing a dominant-negative form of SNAI1 (SNAI1-DN). Expression of PA system mRNAs was analysed by cDNA microarrays and real-time quantitative RT-PCR. Wound healing assays were used to determine cell migration. PAI-1 distribution was assessed by immunostaining. RESULTS: We demonstrated by both cDNA microarrays and real-time quantitative RT-PCR that the functional blockade of SNAI1 induces a significant decrease of PAI-1 and uPA transcripts. After performing an in vitro wound-healing assay, we observed that SNAI1-DN cells migrate more slowly than MDA-mock cells and in a more collective manner. The blockade of SNAI1 activity resulted in the redistribution of PAI-1 in SNAI1-DN cells decorating large lamellipodia, which are commonly found structures in these cells. CONCLUSIONS: In the absence of functional SNAI1, the expression of PAI-1 transcripts is decreased, although the protein is redistributed at the leading edge of migrating cells in a manner comparable with that seen in normal epithelial cells.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular/fisiologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Mama/genética , Caderinas/metabolismo , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Genes Dominantes , Humanos , Técnicas Imunoenzimáticas , Análise de Sequência com Séries de Oligonucleotídeos , Inibidor 1 de Ativador de Plasminogênio/genética , Pseudópodes/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Cicatrização
8.
Oncotarget ; 8(52): 90108-90122, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29163814

RESUMO

In this study, a novel anticancer reagent based on polyplexes nanoparticles was developed. These nanoparticles are obtained by mixing negatively charged polyelectrolytes with the antitumour cationically-charged pseudopeptide N6L. Using two in vivo experimental tumor pancreatic models based upon PANC-1 and mPDAC cells, we found that the antitumour activity of N6L is significantly raised via its incorporation in polyplexed nanoparticles. Study of the mechanism of action using affinity isolation and si-RNA experiments indicated that N6L-polyplexes are internalized through their interaction with nucleolin. In addition, using a very aggressive model of pancreatic cancer in which gemcitabine, a standard of care for this type of cancer, has a weak effect on tumour growth, we observed that N6L-polyplexes administration has a stronger efficacy than gemcitabine. Biodistribution studies carried out in tumour-bearing mice indicated that N6L-polyplexes localises in tumour tissue, in agreement with its antitumour effect. These results support the idea that N6L nanoparticles could develop into a promising strategy for the treatment of cancer, especially hard-to-treat pancreatic cancers.

9.
C R Biol ; 329(12): 919-27, 2006 Dec.
Artigo em Francês | MEDLINE | ID: mdl-17126795

RESUMO

Cancer is a complex and dynamic process caused by a cellular dysfunction leading to a whole organ or even organism vital perturbation. To better understand this process, we need to study each one of the levels involved, which allows the scale change, and to integrate this knowledge. A matricellular protein, PAI-1, is able to induce in vitro cell behaviour modifications, morphological changes, and to promote cell migration. PAI-1 influences the mesenchymo-amaeboid transition. This matricellular protein should be considered as a potential 'launcher' of the metastatic process acting at the molecular, cellular, tissular levels and, as a consequence, at the organism's level.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Neoplasias/fisiopatologia , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , RNA Mensageiro/genética
10.
J Bone Miner Res ; 31(3): 498-513, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26426912

RESUMO

Claudin-16 protein (CLDN16) is a component of tight junctions (TJ) with a restrictive distribution so far demonstrated mainly in the kidney. Here, we demonstrate the expression of CLDN16 also in the tooth germ and show that claudin-16 gene (CLDN16) mutations result in amelogenesis imperfecta (AI) in the 5 studied patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). To investigate the role of CLDN16 in tooth formation, we studied a murine model of FHHNC and showed that CLDN16 deficiency led to altered secretory ameloblast TJ structure, lowering of extracellular pH in the forming enamel matrix, and abnormal enamel matrix protein processing, resulting in an enamel phenotype closely resembling human AI. This study unravels an association of FHHNC owing to CLDN16 mutations with AI, which is directly related to the loss of function of CLDN16 during amelogenesis. Overall, this study indicates for the first time the importance of a TJ protein in tooth formation and underlines the need to establish a specific dental follow-up for these patients.


Assuntos
Ameloblastos/metabolismo , Claudinas/deficiência , Esmalte Dentário/anormalidades , Esmalte Dentário/metabolismo , Junções Íntimas/metabolismo , Adulto , Ameloblastos/patologia , Amelogênese Imperfeita/metabolismo , Amelogênese Imperfeita/patologia , Animais , Criança , Claudinas/genética , Esmalte Dentário/patologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação/genética , Fenótipo , Síndrome , Adulto Jovem
11.
Bone ; 66: 256-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24970041

RESUMO

Tooth development is regulated by a series of reciprocal inductive signaling between the dental epithelium and mesenchyme, which culminates with the formation of dentin and enamel. EMMPRIN/CD147 is an Extracellular Matrix MetalloPRoteinase (MMP) INducer that mediates epithelial-mesenchymal interactions in cancer and other pathological processes and is expressed in developing teeth. Here we used EMMPRIN knockout (KO) mice to determine the functional role of EMMPRIN on dental tissue formation. We report a delay in enamel deposition and formation that is clearly distinguishable in the growing incisor and associated with a significant reduction of MMP-3 and MMP-20 expression in tooth germs of KO mice. Insufficient basement membrane degradation is evidenced by a persistent laminin immunostaining, resulting in a delay of both odontoblast and ameloblast differentiation. Consequently, enamel volume and thickness are decreased in adult mutant teeth but enamel maturation and tooth morphology are normal, as shown by micro-computed tomographic (micro-CT), nanoindentation, and scanning electron microscope analyses. In addition, the dentino-enamel junction appears as a rough calcified layer of approximately 10±5µm thick (mean±SD) in both molars and growing incisors of KO adult mice. These results indicate that EMMPRIN is involved in the epithelial-mesenchymal cross-talk during tooth development by regulating the expression of MMPs. The mild tooth phenotype observed in EMMPRIN KO mice suggests that the direct effect of EMMPRIN may be limited to a short time window, comprised between basement membrane degradation allowing direct cell contact and calcified matrix deposition.


Assuntos
Ameloblastos/patologia , Basigina/metabolismo , Esmalte Dentário/fisiopatologia , Odontoblastos/patologia , Calcificação de Dente , Ameloblastos/metabolismo , Animais , Membrana Basal/metabolismo , Esmalte Dentário/diagnóstico por imagem , Proteínas do Esmalte Dentário/metabolismo , Dentina/metabolismo , Incisivo/enzimologia , Incisivo/crescimento & desenvolvimento , Mandíbula/patologia , Mandíbula/ultraestrutura , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Dente Molar/metabolismo , Odontoblastos/metabolismo , Fenótipo , RNA Interferente Pequeno/metabolismo , Germe de Dente/diagnóstico por imagem , Germe de Dente/enzimologia , Microtomografia por Raio-X
12.
PLoS One ; 4(6): e6075, 2009 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-19562038

RESUMO

Oxidative stress plays a prominent role in the pathophysiology of cystic fibrosis (CF). Despite the presence of oxidative stress markers and a decreased antioxidant capacity in CF airway lining fluid, few studies have focused on the oxidant/antioxidant balance in CF cells. The aim of the current study was to investigate the cellular levels of reactive oxygen species (ROS), oxidative damage and enzymatic antioxidant defenses in the lung of Cftr-knockout mice in basal conditions and as a response to oxidative insult.The results show that endogenous ROS and lipid peroxidation levels are higher in Cftr(-/-) lung when compared to wild-type (Cftr(+/+)) in basal conditions, despite a strong enzymatic antioxidant response involving superoxide dismutases, glutathione peroxidases and peroxiredoxin 6 (Prdx6). The latter has the unique capacity to directly reduce membrane phospholipid hydroperoxides (PL-OOH). A dramatic increase in PL-OOH levels in Cftr(-/-) lung consecutive to in vivo oxidative challenge by paraquat (PQ) unmasks a susceptibility to phospholipid peroxidation. PQ strongly decreases Prdx6 expression in Cftr(-/-) mice compared to Cftr(+/+). Similar results were obtained after P. aeruginosa LPS challenge. Two-dimensional gel analysis of Prdx6 revealed one main molecular form in basal conditions and a PQ-induced form only detected in Cftr(+/+) lung. Mass spectrometry experiments suggested that, as opposed to the main basal form, the one induced by PQ is devoid of overoxidized catalytic Cys47 and could correspond to a fully active form that is not induced in Cftr(-/-) lung. These results highlight a constitutive redox imbalance and a vulnerability to oxidative insult in Cftr(-/-) lung and present Prdx6 as a key component in CF antioxidant failure. This impaired PL-OOH detoxification mechanism may enhance oxidative damage and stress-related signaling, contributing to an exaggerated inflammatory response in CF lung.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Pulmão/metabolismo , Peroxirredoxina VI/fisiologia , Fosfolipídeos/metabolismo , Animais , Antioxidantes/metabolismo , Catálise , Inflamação , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxidantes/metabolismo , Estresse Oxidativo , Peroxirredoxina VI/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais
13.
J Proteome Res ; 6(4): 1595-602, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17355127

RESUMO

Membrane proteins play a large variety of functions in life and represent 30% of all genomes sequenced. Due to their hydrophobic nature, they are tightly bound to their biological membrane, and detergents are always required to extract and isolate them before identification by mass spectrometry (MS). The latter, however remains difficult. Peptide mass fingerprinting methods using techniques such as MALDI-TOF MS, for example, have become an important analytical tool in the identification of proteins. However, PMF of membrane proteins is a real challenge for at least three reasons. First, membrane proteins are naturally present at low levels; second, most of the detergents strongly inhibit proteases and have deleterious effects on MALDI spectra; and third, despite the presence of detergent, membrane proteins are unstable and often aggregate. We took the mitochondrial uncoupling protein 1 (UCP1) as a model and showed that differential acetonitrile extraction of tryptic peptides combined with the use of polystirene Bio-Beads triggered high resolution of the MALDI-TOF identification of mitochondrial membrane proteins solubilized either with Triton-X100 or CHAPS detergents.


Assuntos
Proteínas de Membrana/análise , Mapeamento de Peptídeos/métodos , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acetonitrilas/química , Animais , Ácidos Cólicos/química , Detergentes/química , Canais Iônicos/análise , Camundongos , Microesferas , Proteínas Mitocondriais/análise , Octoxinol/química , Poliestirenos/química , Sensibilidade e Especificidade , Tripsina/química , Proteína Desacopladora 1
14.
Am J Respir Crit Care Med ; 171(9): 1026-31, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15709055

RESUMO

Studying subjects heterozygous for mutations of the cystic fibrosis (CF) gene may help clarify the impact on disease onset of CF transmembrane conductance regulator protein (CFTR-)-dependent chloride secretion. CFTR-mediated chloride transport was evaluated in 52 heterozygous subjects, 32 healthy control subjects, and 77 patients with CF with class I or II mutations. We measured the change in nasal potential difference in response to chloride-free isoproterenol solution for each subject and used a video-imaging fluorescent dye assay to assess the percentage of nasal ciliated cells with cAMP-dependent anion conductance. Our findings did not confirm the standard assumption that heterozygosity implies 50% of normal CFTR function. Half the heterozygous subjects had CFTR-mediated chloride transport levels below 50% of the normal range, and one-third had levels similar to those of the patients with CF. This reduced CFTR function was not associated with an elevated prevalence of CF-like symptoms in heterozygous subjects but was highly related to respiratory status in the patients with CF. These data suggest that CFTR-dependent chloride conductance does not directly modulate disease severity but may be part of a more global defect in patients with CF involving other CFTR functions or currently unknown modulatory factors.


Assuntos
Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/metabolismo , Mucosa Nasal/metabolismo , Fibrose Cística/genética , Feminino , Heterozigoto , Humanos , Íntrons/genética , Masculino , Potenciais da Membrana , Mutação
15.
Mol Cell Proteomics ; 4(10): 1591-601, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16014420

RESUMO

Cystic fibrosis is a fatal human genetic disease caused by mutations in the CFTR gene encoding a cAMP-activated chloride channel. It is characterized by abnormal fluid transport across secretory epithelia and chronic inflammation in lung, pancreas, and intestine. Because cystic fibrosis (CF) pathophysiology cannot be explained solely by dysfunction of cystic fibrosis transmembrane conductance regulator (CFTR), we applied a proteomic approach (bidimensional electrophoresis and mass spectrometry) to search for differentially expressed proteins between mice lacking cftr (cftr(tm1Unc), cftr-/-) and controls using colonic crypts from young animals, i.e. prior to the development of intestinal inflammation. By analyzing total proteins separated in the range of pH 6-11, we detected 24 differentially expressed proteins (>2-fold). In this work, we focused on one of these proteins that was absent in two-dimensional gels from cftr-/- mice. This protein spot (molecular mass, 37 kDa; pI 7) was identified by mass spectrometry as annexin A1, an anti-inflammatory protein. Interestingly, annexin A1 was also undetectable in lungs and pancreas of cftr-/- mice, tissues known to express CFTR. Absence of this inhibitory mediator of the host inflammatory response was associated with colonic up-regulation of the proinflammatory cytosolic phospholipase A2. More importantly, annexin A1 was down-regulated in nasal epithelial cells from CF patients bearing homozygous nonsense mutations in the CFTR gene (Y122X, 489delC) and differentially expressed in F508del patients. These results suggest that annexin A1 may be a key protein involved in CF pathogenesis especially in relation to the not well defined field of inflammation in CF. We suggest that decreased expression of annexin A1 contributes to the worsening of the CF phenotype.


Assuntos
Anexina A1/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Fibrose Cística/metabolismo , Regulação para Baixo/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Anexina A1/química , Estudos de Casos e Controles , Criança , Pré-Escolar , Códon sem Sentido/genética , Colo/citologia , Colo/metabolismo , Colo/patologia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Eletroforese em Gel Bidimensional , Homozigoto , Humanos , Pulmão/citologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mucosa Nasal/citologia , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Pâncreas/citologia , Pâncreas/metabolismo , Pâncreas/patologia , Transporte Proteico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Pediatr Res ; 54(5): 627-34, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12930913

RESUMO

Cystic fibrosis (CF), due to mutations of the cystic fibrosis transmembrane conductance regulator (CFTR), exhibits a wide range of disease severity, even among deltaF508 homozygous patients, and the mechanisms of this variability have yet to be elucidated. In view of the close structural homology and possible functional overlap between CFTR and Multidrug Resistance-associated Proteins (MRPs), MRPs were investigated as potentially relevant factors in CF pathophysiology. MRP1-5 gene expression was analyzed in nasal respiratory epithelial cells from deltaF508 homozygous patients (n = 19) and control subjects (n = 20) using semiquantitative RT-PCR. Significantly lower MRP1 and MRP5 transcript levels were found in CF patients than in control subjects. MRP1 and MRP5 transcript levels were strongly correlated (r = 0.71). In CF patients, low MRP1 transcript levels were associated with more severe disease as assessed by the Shwachman score. A relation was also observed between MRP1 levels and presence of a cAMP-independent chloride conductive pathway, as determined by a halide-sensitive fluorescent assay. These results suggest that MRPs, especially MRP1, might play a role in CF phenotype and might therefore constitute a target for a novel pharmacotherapy of CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulação da Expressão Gênica , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação Puntual , Adolescente , Adulto , Criança , Pré-Escolar , Cloretos/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mucosa Nasal/citologia , Mucosa Nasal/metabolismo , Estatística como Assunto
17.
Pediatr Res ; 52(5): 628-35, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12409506

RESUMO

Cystic fibrosis (CF) is caused by mutations of the gene encoding for the CFTR (CF transmembrane conductance regulator) protein. The most frequent mutation, the (Delta)F508 mutation, results in a defective cAMP-regulated chloride transport in the epithelial cells. The spectrum of clinical manifestations in patients bearing homozygous (Delta)F508 mutations can vary considerably, suggesting that, in the patients with a mild disease, CFTR could be partly functional. To test this hypothesis, we explored in nasal ciliated epithelial cells (NCC) of 9 control subjects and 23 (Delta)F508 homozygous patients the anion conductive pathway by a halide sensitive fluorescent dye assay SPQ (6-methoxy-N-3'-sulfopropylquinolinium) and the CFTR transcript levels by RT-PCR. As 50% represented the lowest fraction of the control subjects NCC demonstrating a cAMP-dependent conductance, a CF patient was considered as "cAMP responder" if at least 50% of the NCC tested displayed a cAMP-dependent conductive pathway. According to these criteria, 8 of the 23 patients were considered as cAMP responders. They had a significantly less severe disease considering the respiratory function and infectious status. The amount of CFTR mRNA did not differ between the control subjects and the patients. No statistical correlation could be found between the transcript level and the expression of a cAMP conductive pathway. This cAMP-dependent Cl(-) conductance detected in homozygous NCC could be due to a residual CFTR activity and may explain the mild phenotypes observed in some (Delta)F508 homozygous patients.


Assuntos
Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fibrose Cística/genética , Transporte de Íons/genética , Mutação Puntual , Deleção de Sequência , Códon/genética , AMP Cíclico/fisiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Corantes Fluorescentes/metabolismo , Homozigoto , Humanos , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Fenótipo , Compostos de Quinolínio/metabolismo , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sistemas do Segundo Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA