Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Phys Chem Chem Phys ; 26(16): 12725-12737, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38616653

RESUMO

C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival 'direct' and 'indirect' dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by ∼1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) π∗ ← π and (C-I bond localized) σ∗ ← (n/π) excitation in the respective parent isomers.

2.
J Phys Chem A ; 128(22): 4548-4560, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713032

RESUMO

We present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation. We apply these techniques to extensively characterize the dissociation of 1-iodopropane and 2-iodopropane dications prepared by site-selective ionization of the iodine atom using extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Our assignments are supported by classical simulations, using parameters largely obtained directly from the experimental data.

3.
Phys Chem Chem Phys ; 25(37): 25322-25330, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37702573

RESUMO

Tetrahydrofuran (THF), a cyclic ether with the chemical formula C4H8O, can be considered the simplest analog of the deoxyribose backbone component of deoxyribonucleic acid (DNA). As such, it provides a useful model for probing the photochemistry of such biomolecular motifs. We present a velocity-map imaging study into the ultraviolet dissociation of THF at a wavelength of 193 nm. Excitation to the S1 state occurs via a 3s ← n transition involving a lone-pair electron on the oxygen atom, and has been shown by other authors to result in rapid ring opening via cleavage of one of the C-O bonds to form a ring-opened C4H8O diradical, followed by C-C bond cleavage over a longer timescale to form either OCH2 + C3H6 products (Channel 1a), HOCH2 + C2H5 products (Channel 1b), or OCH2CH2 + C2H4 products (Channel 2). The C2H4O products formed via Channel 2 are unstable on the timescale of our experiment and dissociate further to form CH3 and CHO. We also observe a number of minor products resulting from H or H2 loss from the primary photofragments. The speed distributions observed for all photofragments are broad, indicating excitation of a range of rotational and vibrational states of the products. The angular distributions of the photofragments show an interesting speed dependence: the slowest products have almost isotropic angular distributions, but the magnitude of the recoil anisotropy increases monotonically with photofragment speed. The fastest products exhibit highly anisotropic angular distributions, with the recoil anisotropy parameter ß approaching its limiting value of -1 (-0.75 for Channel 1 and -0.5 for Channel 2). This behaviour is attributed to the range of timescales over which the diradical intermediate dissociates into the observed photofragments. Rapid dissociation leads to fast photofragments which retain the correlation between the transition dipole moment for the S1 ← S0 excitation (which lies perpendicular to the ring) and the photofragment velocities (which lie predominantly in the plane of the ring). Slow dissociation results in a high degree of energy redistribution into internal modes, slower photofragments, and loss of correlation between the photofragment velocities and the transition dipole. The higher barrier associated with dissociation via Channel 2 suggests somewhat longer lifetimes for the diradical intermediate and is consistent with a corresponding reduction in the maximum observed value for ß.

4.
N Engl J Med ; 380(5): 425-436, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30699315

RESUMO

BACKGROUND: The management of complex orthopedic infections usually includes a prolonged course of intravenous antibiotic agents. We investigated whether oral antibiotic therapy is noninferior to intravenous antibiotic therapy for this indication. METHODS: We enrolled adults who were being treated for bone or joint infection at 26 U.K. centers. Within 7 days after surgery (or, if the infection was being managed without surgery, within 7 days after the start of antibiotic treatment), participants were randomly assigned to receive either intravenous or oral antibiotics to complete the first 6 weeks of therapy. Follow-on oral antibiotics were permitted in both groups. The primary end point was definitive treatment failure within 1 year after randomization. In the analysis of the risk of the primary end point, the noninferiority margin was 7.5 percentage points. RESULTS: Among the 1054 participants (527 in each group), end-point data were available for 1015 (96.3%). Treatment failure occurred in 74 of 506 participants (14.6%) in the intravenous group and 67 of 509 participants (13.2%) in the oral group. Missing end-point data (39 participants, 3.7%) were imputed. The intention-to-treat analysis showed a difference in the risk of definitive treatment failure (oral group vs. intravenous group) of -1.4 percentage points (90% confidence interval [CI], -4.9 to 2.2; 95% CI, -5.6 to 2.9), indicating noninferiority. Complete-case, per-protocol, and sensitivity analyses supported this result. The between-group difference in the incidence of serious adverse events was not significant (146 of 527 participants [27.7%] in the intravenous group and 138 of 527 [26.2%] in the oral group; P=0.58). Catheter complications, analyzed as a secondary end point, were more common in the intravenous group (9.4% vs. 1.0%). CONCLUSIONS: Oral antibiotic therapy was noninferior to intravenous antibiotic therapy when used during the first 6 weeks for complex orthopedic infection, as assessed by treatment failure at 1 year. (Funded by the National Institute for Health Research; OVIVA Current Controlled Trials number, ISRCTN91566927 .).


Assuntos
Administração Oral , Antibacterianos/administração & dosagem , Doenças Ósseas Infecciosas/tratamento farmacológico , Artropatias/tratamento farmacológico , Administração Intravenosa , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Feminino , Humanos , Análise de Intenção de Tratamento , Masculino , Adesão à Medicação , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
5.
Faraday Discuss ; 238(0): 682-699, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35781475

RESUMO

Recently, covariance analysis has found significant use in the field of chemical reaction dynamics. When coupled with data from product time-of-flight mass spectrometry and/or multi-mass velocity-map imaging, it allows us to uncover correlations between two or more ions formed from the same parent molecule. While the approach has parallels with coincidence measurements, covariance analysis allows experiments to be performed at much higher count rates than traditional coincidence methods. We report results from electron-molecule crossed-beam experiments, in which covariance analysis is used to elucidate the dissociation dynamics of multiply-charged ions formed by electron ionisation over the energy range from 50 to 300 eV. The approach is able to isolate signal contributions from multiply charged ions even against a very large 'background' of signal arising from dissociation of singly-charged parent ions. Covariance between the product time-of-flight spectra identifies pairs of fragments arising from the same parent ions, while covariances between the velocity-map images ('recoil-frame covariances') reveal the relative velocity distributions of the ion pairs. We show that recoil-frame covariance analysis can be used to distinguish between multiple plausible dissociation mechanisms, including multi-step processes, and that the approach becomes particularly powerful when investigating the fragmentation dynamics of larger molecules with a higher number of possible fragmentation pathways.


Assuntos
Elétrons , Espectrometria de Massas/métodos , Íons/química
6.
Phys Chem Chem Phys ; 24(46): 28343-28352, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36385659

RESUMO

N,N-Dimethylformamide, (CH3)2NCHO, is the simplest tertiary amide and a model compound for investigating the photofragmentation of peptide bonds. We report the results of a velocity-map imaging study into the photodissociation dynamics of DMF following excitation at 225 nm and 245 nm. Excitation at either wavelength generates a variety of products, with the primary dissociation pathways involving cleavage of either the N-CO amide bond or an N-CH3 bond. Excitation at 225 nm is predominantly to the S2 21A'' state via a parallel transition, with dissociation of the amide bond occurring either on this state or on a lower singlet surface following internal conversion. The topographies of all of the potential energy surfaces involved result in dissociation from a range of planar (apart from the methyl-group hydrogen atoms) and non-planar molecular geometries. Dissociation from planar geometries leads to little product internal excitation, correspondingly high photofragment velocities, and near-limiting values of the recoil-anisotropy parameter ß. Dissociation from non-planar geometries leads to significant product internal excitation, with correspondingly lower photofragment velocities and breakdown of the axial recoil approximation to give reduced values of ß. Excitation at 245 nm involves the same excited-state surfaces, but at the longer wavelength the S2 state can only be reached from non-equilibrium geometries of the ground state, leading to a reduction in the recoil anisotropy parameter relative to excitation at 225 nm. The potential energy curves associated with cleavage of the N-CH3 bond are less well characterised. However, the pathway is characterised by an isotropic angular distribution and a TKER distribution peaking at low energies, both of which can be rationalised in terms of the molecular geometry and the orientation of the transition dipole involved in the excitation step.

7.
Phys Chem Chem Phys ; 24(38): 23096-23105, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35876592

RESUMO

We investigated the dissociation of dications and trications of three polycyclic aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and pyrene. PAHs are a family of molecules ubiquitous in space and involved in much of the chemistry of the interstellar medium. In our experiments, ions are formed by interaction with 30.3 nm extreme ultraviolet (XUV) photons, and their velocity map images are recorded using a PImMS2 multi-mass imaging sensor. Application of recoil-frame covariance analysis allows the total kinetic energy release (TKER) associated with multiple fragmentation channels to be determined to high precision, ranging 1.94-2.60 eV and 2.95-5.29 eV for the dications and trications, respectively. Experimental measurements are supported by Born-Oppenheimer molecular dynamics (BOMD) simulations.

8.
Phys Chem Chem Phys ; 24(37): 22699-22709, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106844

RESUMO

We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.

9.
J Phys Chem A ; 126(40): 7221-7229, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36194389

RESUMO

The dissociation of C2F6 following electron ionization at 100 eV has been studied using multimass velocity-map ion imaging and covariance-map imaging analysis. Single ionization events form parent C2F6+ cations in an ensemble of electronic states, which follow a multiplex of relaxation pathways to eventually dissociate into ionic and neutral fragment products. We observe CF3+, CF2+, CF+, C+, F+, C2F5+, C2F4+, C2F2+, and C2F+ ions, all of which can reasonably be formed from singly charged parent ions. Dissociation along the C-C bond typically forms slow-moving, internally excited products, whereas C-F bond cleavage is rapid and impulsive. Dissociation from the à state of the cation preferentially forms C2F5+ and neutral F along a purely repulsive surface. No other electronic state of the ion will form this product pair at the electron energies studied in this work, nor do we observe any crossing onto this surface from higher-lying states of the parent ion. Multiply charged dissociative pathways are also explored, and we note characteristic high kinetic energy release channels due to Coulombic repulsion between charged fragments. The most abundant ion pair we observe is (CF2+, CF+), and we also observe ion pair signals in the covariance maps associated with almost all possible C-C bond cleavage products as well as between F+ and each of CF3+, CF2+, CF+, and C+. No covariance between F+ and C2F5+ is observed, implying that any C2F5+ formed with F+ is unstable and undergoes secondary fragmentation. Dissociation of multiply charged parent ions occurs via a number of mechanisms, details of which are revealed by recoil-frame covariance-map imaging.

10.
Faraday Discuss ; 228(0): 571-596, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33629700

RESUMO

The photodissociation dynamics of strong-field ionized methyl iodide (CH3I) were probed using intense extreme ultraviolet (XUV) radiation produced by the SPring-8 Angstrom Compact free electron LAser (SACLA). Strong-field ionization and subsequent fragmentation of CH3I was initiated by an intense femtosecond infrared (IR) pulse. The ensuing fragmentation and charge transfer processes following multiple ionization by the XUV pulse at a range of pump-probe delays were followed in a multi-mass ion velocity-map imaging (VMI) experiment. Simultaneous imaging of a wide range of resultant ions allowed for additional insight into the complex dynamics by elucidating correlations between the momenta of different fragment ions using time-resolved recoil-frame covariance imaging analysis. The comprehensive picture of the photodynamics that can be extracted provides promising evidence that the techniques described here could be applied to study ultrafast photochemistry in a range of molecular systems at high count rates using state-of-the-art advanced light sources.

11.
J Phys Chem A ; 125(32): 7092-7098, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34351156

RESUMO

When applied to multimass velocity-map imaging data, covariance analysis reveals correlations between different fragment ions formed from the same parent molecule and can provide detailed insights into the fragmentation dynamics. Covariances between the time-of-flight signals for two different ions show that they are formed in the same event, while covariances between their velocity-map images, often referred to as "recoil-frame covariances", reveal details of the correlated motion of the two fragments. In many cases, covariance analysis is complicated by the fact that fluctuations in experimental parameters such as laser or molecular beam intensities can lead to apparent correlations between unrelated ions. In the context of time-of-flight covariance signals, this problem has been overcome by the introduction of partial covariance and contingent covariance approaches. Here, we apply these approaches to recoil-frame covariance-map images. We also demonstrate that in many cases the total signal within each experimental cycle can be used as a useful proxy for independent explicit measurements of the varying experimental parameter(s).

12.
J Phys Chem A ; 125(5): 1117-1133, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33476155

RESUMO

Over the past decade or so, the state-of-the-art in the field of chemical reaction dynamics has progressed from studies of few-atom systems to wide-ranging investigations into a variety of photoinduced and collision-induced processes in much larger molecules. Many of these studies are of direct relevance to a wide audience of chemists, spanning fields such as atmospheric chemistry, astrochemistry, synthetic chemistry, and chemical biology. Key to this work has been the technique of velocity-map imaging, which allows complete product scattering distributions to be recorded for the process of interest. Recent advances in camera technology have enabled the development of multimass velocity-map imaging, in which the scattering distributions of all reaction products can be recorded in a single measurement. In addition to the scattering distributions of individual reaction products, the data set now contains information on correlations between the scattering distributions of two or more fragments. These correlations can be revealed using the technique of statistical covariance, yielding an approach known as covariance-map imaging. This review will introduce the reader to covariance mapping and will describe various applications of the technique within the field of chemical dynamics. The underlying concepts will be illustrated through a series of simple simulations, before moving on to describe a number of recent experimental studies in which covariance mapping has been used to obtain mechanistic insight and information on molecular structure on the femtosecond time scale.

13.
J Phys Chem A ; 125(23): 5220-5225, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34097418

RESUMO

We report a new implementation of three-dimensional (3D) momentum imaging for electrons, employing a two-dimensional (2D) imaging detector and a silicon photomultiplier tube (siPMT). To achieve the necessary time resolution for 3D electron imaging, a poly(p-phenylene)-dye-based fast scintillator (Exalite 404) was used in the imaging detector instead of conventional phosphors. The system demonstrated an electron time-of-flight resolution comparable with that of electrical MCP pick-off (tens of picoseconds), while achieving an unprecedented dead time reduction (∼0.48 ns) when detecting two electrons.

14.
J Chem Phys ; 153(18): 184201, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33187401

RESUMO

Coulomb explosion velocity-map imaging is a new and potentially universal probe for gas-phase chemical dynamics studies, capable of yielding direct information on (time-evolving) molecular structure. The approach relies on a detailed understanding of the mapping between the initial atomic positions within the molecular structure of interest and the final velocities of the fragments formed via Coulomb explosion. Comprehensive on-the-fly ab initio trajectory studies of the Coulomb explosion dynamics are presented for two prototypical small molecules, formyl chloride and cis-1,2-dichloroethene, in order to explore conditions under which reliable structural information can be extracted from fragment velocity-map images. It is shown that for low parent ion charge states, the mapping from initial atomic positions to final fragment velocities is complex and very sensitive to the parent ion charge state as well as many other experimental and simulation parameters. For high-charge states, however, the mapping is much more straightforward and dominated by Coulombic interactions (moderated, if appropriate, by the requirements of overall spin conservation). This study proposes minimum requirements for the high-charge regime, highlights the need to work in this regime in order to obtain robust structural information from fragment velocity-map images, and suggests how quantitative structural information may be extracted from experimental data.

15.
Phys Chem Chem Phys ; 21(26): 14296-14305, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30643915

RESUMO

We present a comprehensive experimental study into the dissociative electron ionization dynamics of CF3I at energies ranging from 20 to 100 eV. A beam-gas instrument has been used to measure the absolute total ionization cross-section for the molecule over the energy range from 0 to 300 eV. Coupled with data from an electron-molecule crossed beam velocity-map imaging instrument, this allows absolute partial ionization cross-sections to be determined for formation of each ionic fragment. These reveal a number of fragmentation channels involving both C-I and C-F bond cleavage, in some cases followed by further fragmentation of the resulting molecular ion. Velocity-map images have been recorded for the I+ and CF3+ products of C-I bond cleavage and the CF2I+ products of C-F bond cleavage. Analysis of fragment kinetic energy distributions extracted from the images reveals that CF3+ product of C-I bond cleavage appears to be formed via a statistical mechanism occurring over long timescales, while the CF2I+ products of C-F cleavage are formed via a much faster, more direct dissociation mechanism involving one or more repulsive states of the parent molecular ion. The I+ fragments arising from C-I bond cleavage display behaviour intermediate between the two extremes. For all fragments, the images show little or no dependence on the energy of the incident electron, implying that the initially excited ion state or states undergo rapid relaxation to the dissociative state(s) in all cases. Only a very small fraction of the incident electron's kinetic energy is released into kinetic energy of the recoiling atomic and molecular fragments, implying that most of the available energy remains with the two departing electrons. The kinetic energy distributions obtained for the various fragments of dissociative electron ionization are compared with the corresponding distributions reported from photoionization studies in order to gain insight into the electronic states involved.

17.
Nature ; 546(7660): 608-609, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28658226

Assuntos
Físico-Química
18.
J Chem Phys ; 149(20): 204313, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501230

RESUMO

The photodissociation dynamics of CH3I and CH2ClI at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815 nm probe pulse. Fragment ion momenta over a wide m/z range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion. Multi-mass imaging also allowed the sequential cleavage of both carbon-halogen bonds in CH2ClI to be investigated. Furthermore, delay-dependent relative fragment momenta of a pair of ions were directly determined using recoil-frame covariance analysis. These results are complementary to conventional velocity map imaging experiments and demonstrate the application of time-resolved Coulomb explosion imaging to photoinduced real-time molecular motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA