Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Front Zool ; 15: 15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721030

RESUMO

BACKGROUND: The MHC class I and II loci mediate the adaptive immune response and belong to the most polymorphic loci in vertebrate genomes. In fact, the number of different alleles in a given species is often so large that it remains a challenge to provide an evolutionary model that can fully account for this. RESULTS: We provide here a general survey of MHC allele numbers in house mouse populations and two sub-species (M. m. domesticus and M. m. musculus) for H2 class I D and K, as well as class II A and E loci. Between 50 and 90% of the detected different sequences constitute new alleles, confirming that the discovery of new alleles is indeed far from complete. House mice live in separate demes with small effective population sizes, factors that were proposed to reduce, rather than enhance the possibility for the maintenance of many different alleles. To specifically investigate the occurrence of alleles within demes, we focused on the class II H2-Aa and H2-Eb exon 2 alleles in nine demes of M. m. domesticus from two different geographic regions. We find on the one hand a group of alleles that occur in different sampling regions and three quarters of these are also found in both sub-species. On the other hand, the larger group of different alleles (56%) occurs only in one of the regions and most of these (89%) only in single demes. We show that most of these region-specific alleles have apparently arisen through recombination and/or partial gene conversion from already existing alleles. CONCLUSIONS: Demes can act as sources of alleles that outnumber the set of alleles that are shared across the species range. These findings support the reservoir model proposed for human MHC diversity, which states that large pools of rare MHC allele variants are continuously generated by neutral mutational mechanisms. Given that these can become important in the defense against newly emerging pathogens, the reservoir model complements the selection based models for MHC diversity and explains why the exceptional diversity exists.

2.
BMC Evol Biol ; 17(1): 187, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806915

RESUMO

BACKGROUND: B4galnt2 is a blood group-related glycosyltransferase that displays cis-regulatory variation for its tissue-specific expression patterns in house mice. The wild type allele, found e.g. in the C57BL/6 J strain, directs intestinal expression of B4galnt2, which is the pattern observed among vertebrates, including humans. An alternative allele class found in the RIIIS/J strain and other mice instead drives expression in blood vessels, which leads to a phenotype similar to type 1 von Willebrand disease (VWD), a common human bleeding disorder. We previously showed that alternative B4galnt2 alleles are subject to long-term balancing selection in mice and that variation in B4galnt2 expression influences host-microbe interactions in the intestine. This suggests that the costs of prolonged bleeding in RIIIS/J allele-bearing mice might be outweighed by benefits associated with resistance against gastrointestinal pathogens. However, the conditions under which such trade-offs could lead to the long-term maintenance of disease-associated variation at B4galnt2 are unclear. RESULTS: To explore the persistence of B4galnt2 alleles in wild populations of house mice, we combined B4galnt2 haplotype frequency data together with a mathematical model based on an evolutionary game framework with a modified Wright-Fisher process. In particular, given the potential for a heterozygote advantage as a possible explanation for balancing selection, we focused on heterozygous mice, which express B4galnt2 in both blood vessels and the gastrointestinal tract. We show that B4galnt2 displays an interesting spatial allelic distribution in Western Europe, likely due to the recent action of natural selection. Moreover, we found that the genotype frequencies observed in nature can be produced by pathogen-driven selection when both heterozygotes and RIIIS/J homozygotes are protected against infection and the fitness cost of bleeding is roughly half that of infection. CONCLUSION: By comparing the results of our models to the patterns of polymorphism at B4galnt2 in natural populations, we are able to recognize the long-term maintenance of the RIIIS/J allele through host-pathogen interactions as a viable hypothesis. Further, our models identify that a putative dominant-, yet unknown protective function of the RIIIS/J allele appears to be more likely than a protective loss of intestinal B4galnt2 expression in RIIIS/J homozygotes.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Doença/genética , N-Acetilgalactosaminiltransferases/genética , Alelos , Animais , Simulação por Computador , Europa (Continente) , Frequência do Gene/genética , Heterozigoto , Humanos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Mutação/genética
4.
Front Cardiovasc Med ; 11: 1342388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317864

RESUMO

Introduction: Totum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia. Methods: C57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks. Results: The Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota. Discussion: The characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota.

5.
Gut Microbes ; 15(1): 2164448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683151

RESUMO

Infectious disease is widely considered to be a major driver of evolution. A preponderance of signatures of balancing selection at blood group-related genes is thought to be driven by inherent trade-offs in susceptibility to disease. B4galnt2 is subject to long-term balancing selection in house mice, where two divergent allele classes direct alternative tissue-specific expression of a glycosyltransferase in the intestine versus blood vessels. The blood vessel allele class leads to prolonged bleeding times similar to von Willebrand disease in humans, yet has been maintained for millions of years. Based on in vivo functional studies in inbred lab strains, it is hypothesized that the cost of prolonged bleeding times may be offset by an evolutionary trade-off involving susceptibility to a yet unknown pathogen(s). To identify candidate pathogens for which resistance could be mediated by B4galnt2 genotype, we here employed a novel "pathometagenomic" approach in a wild mouse population, which combines bacterial 16S rRNA gene-based community profiling with histopathology of gut tissue. Through subsequent isolation, genome sequencing and controlled experiments in lab mice, we show that the presence of the blood vessel allele is associated with resistance to a newly identified subspecies of Morganella morganii, a clinically important opportunistic pathogen. Given the increasing importance of zoonotic events, the approach outlined here may find useful application in the detection of emerging diseases in wild animal populations.


Assuntos
Antígenos de Grupos Sanguíneos , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Morganella , RNA Ribossômico 16S , Genótipo
6.
RMD Open ; 9(1)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36963782

RESUMO

OBJECTIVE: To assess whether gut microbiota composition is associated with patient characteristics and may have predictive value on the response to TNF inhibitor (TNFi) treatment in axial spondyloarthritis (AxSpA). METHODS: The study involved 61 patients fulfilling the Assessment of SpondyloArthritis International Society classification criteria for AxSpA. All patients had active disease despite non-steroidal anti-inflammatory drugs intake and were eligible for treatment with a TNFi. At baseline, the mean Ankylosing Spondylitis Disease Activity Score was 2.9±1 and mean C reactive protein (CRP) level 9.7±11.4 mg/L. Bacterial 16S ribosomal RNA gene sequencing was performed on stool samples collected at baseline (month 0 (M0)) and 3 months after TNFi initiation (month 3 (M3)). Alpha and beta diversity metrics were calculated on the relative abundance of core operational taxonomic units (OTUs). RESULTS: The HLA-B27 status affected at least in part the global composition of faecal microbiota at M0 as well as the abundance/prevalence of several anaerobic bacteria in the families Oscillospiraceae, Lachnospiraceae and Bifidobacteriaceae. In contrast, smoking affected the global composition of faecal microbiota at both M0 and M3. The prevalence/abundance of seven bacterial OTUs at M0 was associated with response to TNFi treatment. One of the candidates, present only in non-responders, is the genus Sutterella, and the other six candidates are in the class Clostridia. CONCLUSIONS: Several SpA patients' characteristics modulate the composition of gut microbiota as did TNFi treatment. Moreover, the abundance/prevalence of seven OTUs at baseline may be used as a novel non-invasive index that predicts the response to TNFi with greater accuracy than HLA-B27 status, CRP level and measures of disease activity.


Assuntos
Microbioma Gastrointestinal , Espondilite Anquilosante , Humanos , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Antígeno HLA-B27/genética , Resultado do Tratamento , Fator de Necrose Tumoral alfa , Espondilite Anquilosante/tratamento farmacológico
7.
Gut Microbes ; 15(2): 2286675, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059748

RESUMO

Inflammatory bowel disease (IBD) is a persistent inflammatory condition that affects the gastrointestinal tract and presents significant challenges in its management and treatment. Despite the knowledge that within-host bacterial evolution occurs in the intestine, the disease has rarely been studied from an evolutionary perspective. In this study, we aimed to investigate the evolution of resident bacteria during intestinal inflammation and whether- and how disease-related bacterial genetic changes may present trade-offs with potential therapeutic importance. Here, we perform an in vivo evolution experiment of E. coli in a gnotobiotic mouse model of IBD, followed by multiomic analyses to identify disease-specific genetic and phenotypic changes in bacteria that evolved in an inflamed versus a non-inflamed control environment. Our results demonstrate distinct evolutionary changes in E. coli specific to inflammation, including a single nucleotide variant that independently reached high frequency in all inflamed mice. Using ex vivo fitness assays, we find that these changes are associated with a higher fitness in an inflamed environment compared to isolates derived from non-inflamed mice. Further, using large-scale phenotypic assays, we show that bacterial adaptation to inflammation results in clinically relevant phenotypes, which intriguingly include collateral sensitivity to antibiotics. Bacterial evolution in an inflamed gut yields specific genetic and phenotypic signatures. These results may serve as a basis for developing novel evolution-informed treatment approaches for patients with intestinal inflammation.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Escherichia coli/genética , Relevância Clínica , Doenças Inflamatórias Intestinais/genética , Bactérias , Inflamação , Genótipo
8.
Nutrients ; 15(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38140315

RESUMO

Atherosclerotic cardiovascular disease is the leading cause of mortality worldwide, and hypercholesterolemia is a central risk factor for atherosclerosis. This study evaluated the effects of Totum-070, a plant-based polyphenol-rich supplement, in hamsters with high-fat diet (HFD)-induced dyslipidemia. The molecular mechanisms of action were explored using human Caco2 enterocytes. Totum-070 supplementation reduced the total cholesterol (-41%), non-HDL cholesterol (-47%), and triglycerides (-46%) in a dose-dependent manner, compared with HFD. HFD-induced hepatic steatosis was also significantly decreased by Totum-070, an effect associated with the reduction in various lipid and inflammatory gene expression. Upon challenging with olive oil gavage, the post-prandial triglyceride levels were strongly reduced. The sterol excretion in the feces was increased in the HFD-Totum-070 groups compared with the HFD group and associated with reduction of intestinal cholesterol absorption. These effects were confirmed in the Caco2 cells, where incubation with Totum-070 inhibited cholesterol uptake and apolipoprotein B secretion. Furthermore, a microbiota composition analysis revealed a strong effect of Totum-070 on the alpha and beta diversity of bacterial species and a significant decrease in the Firmicutes to Bacteroidetes ratio. Altogether, our findings indicate that Totum-070 lowers hypercholesterolemia by reducing intestinal cholesterol absorption, suggesting that its use as dietary supplement may be explored as a new preventive strategy for cardiovascular diseases.


Assuntos
Aterosclerose , Hipercolesterolemia , Hiperlipidemias , Cricetinae , Animais , Humanos , Hipercolesterolemia/etiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Dieta Hiperlipídica/efeitos adversos , Polifenóis/farmacologia , Polifenóis/metabolismo , Células CACO-2 , Mesocricetus , Colesterol/metabolismo , Hiperlipidemias/metabolismo , Triglicerídeos/metabolismo , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Fígado/metabolismo
9.
Front Nutr ; 8: 758518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869528

RESUMO

Nutrition appears to be an important environmental factor involved in the onset of inflammatory bowel diseases (IBD) through yet poorly understood biological mechanisms. Most studies focused on fat content in high caloric diets, while refined sugars represent up to 40% of caloric intake within industrialized countries and contribute to the growing epidemics of inflammatory diseases. Herein we aim to better understand the impact of a high-fat-high-sucrose diet on intestinal homeostasis in healthy conditions and the subsequent colitis risk. We investigated the early events and the potential reversibility of high caloric diet-induced damage in mice before experimental colitis. C57BL/6 mice were fed with a high-fat or high-fat high-sucrose or control diet before experimental colitis. In healthy mice, a high-fat high-sucrose diet induces a pre-IBD state characterized by gut microbiota dysbiosis with a total depletion of bacteria belonging to Barnesiella that is associated with subclinical endoscopic lesions. An overall down-regulation of the colonic transcriptome converged with broadly decreased immune cell populations in the mesenteric lymph nodes leading to the inability to respond to tissue injury. Such in-vivo effects on microbiome and transcriptome were partially restored when returning to normal chow. Long-term consumption of diet enriched in sucrose and fat predisposes mice to colitis. This enhanced risk is preceded by gut microbiota dysbiosis and transcriptional reprogramming of colonic genes related to IBD. Importantly, diet-induced transcriptome and microbiome disturbances are partially reversible after switching back to normal chow with persistent sequelae that may contribute to IBD predisposition in the general population.

10.
Food Funct ; 11(10): 9144-9156, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33026020

RESUMO

An early mechanism for the health benefits of dietary plant phenols is their antioxidant activity in the upper digestive tract. Indeed, these non-essential micronutrients abundant in fruits and vegetables can efficiently fight the iron-induced peroxidation of dietary lipids in the gastric compartment, a recognized form of postprandial oxidative stress. In this work, this phenomenon is investigated through a simple model based on nano-emulsions of trilinoleylglycerol, which permits a direct spectroscopic monitoring and mechanistic insights sustained by extensive kinetic analysis. Polyphenols belonging to the main dietary classes are tested, in particular, flavonols, anthocyanins, flavanols and oligomeric procyanidins. Overall, the common polyphenols tested are good inhibitors of lipid peroxidation induced by metmyoglobin (heme iron) in the early stage of digestion (pH 5-6). For instance, under our peroxidation conditions (2 µM heme, 0.7 mM linoleic acid equivalent, 4.5 mM Brij®35), IC50 concentrations in the range 0.4-1.9 µM were estimated for the set of polyphenols, with oligomeric procyanidins being less inhibitory than the flavanol monomers. However, the polyphenols are ineffective at lower pH (pH 4) when the hematin cofactor is dissociated from its protein (globin). On the other hand, a moderate protection against lipid peroxidation induced by free iron (e.g., released by the oxidative degradation of hematin) persists. This protocol, which combines simplicity and nutritional relevance, could provide a basis for standard tests aimed at assessing the antioxidant capacity of foods and food additives.


Assuntos
Antioxidantes/química , Ferro/química , Fenóis/química , Triglicerídeos/química , Antioxidantes/metabolismo , Emulsões/química , Emulsões/metabolismo , Mucosa Gástrica/química , Mucosa Gástrica/metabolismo , Humanos , Ferro/metabolismo , Modelos Biológicos , Oxirredução , Fenóis/metabolismo , Triglicerídeos/metabolismo
11.
ISME J ; 14(10): 2367-2380, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32518248

RESUMO

The house mouse is a key model organism in skin research including host-microbiota interactions, yet little is known about the skin microbiota of free-living mice. It is similarly unclear how closely laboratory mice, which typically live under exceptionally hygienic conditions, resemble the ancestral state of microbial variation in the wild. In this study, we sampled an area spanning 270 km2 in south-west France and collected 203 wild Mus musculus domesticus. We profiled the ear skin microbiota on standing and active communities (DNA-based and RNA-based 16 rRNA gene sequencing, respectively), and compared multiple community aspects between wild-caught and laboratory-reared mice kept in distinct facilities. Compared to lab mice, we reveal the skin microbiota of wild mice on the one hand to be unique in their composition within the Staphylococcus genus, with a majority of sequences most closely matching known novobiocin-resistant species, and display evidence of a rare biosphere. On the other hand, despite drastic disparities between natural and laboratory environments, we find that shared taxa nonetheless make up the majority of the core skin microbiota of both wild- and laboratory skin communities, suggesting that mammalian skin is a highly specialized habitat capable of strong selection from available species pools. Finally, the influence of environmental factors suggests RNA-based profiling as a preferred method to reduce environmental noise.


Assuntos
Laboratórios , Microbiota , Animais , Bactérias/genética , França , Camundongos , RNA Ribossômico 16S/genética
12.
Front Immunol ; 11: 1938, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983122

RESUMO

The rise of antimicrobial resistance (AMR) in bacterial pathogens is acknowledged by the WHO as a major global health crisis. It is estimated that in 2050 annually up to 10 million people will die from infections with drug resistant pathogens if no efficient countermeasures are implemented. Evolution of pathogens lies at the core of this crisis, which enables rapid adaptation to the selective pressures imposed by antimicrobial usage in both medical treatment and agriculture, consequently promoting the spread of resistance genes or alleles in bacterial populations. Approaches developed in the field of Evolutionary Medicine attempt to exploit evolutionary insight into these adaptive processes, with the aim to improve diagnostics and the sustainability of antimicrobial therapy. Here, we review the concept of evolutionary trade-offs in the development of AMR as well as new therapeutic approaches and their impact on host-microbiome-pathogen interactions. We further discuss the possible translation of evolution-informed treatments into clinical practice, considering both the rapid cure of the individual patients and the prevention of AMR.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Animais , Gestão de Antimicrobianos , Bactérias/genética , Infecções Bacterianas/microbiologia , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Medicina de Precisão
13.
Food Funct ; 10(7): 3942-3954, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31199415

RESUMO

Lipid oxidation takes place in the gastric tract after the ingestion of a Western diet rich in ω-6 polyunsaturated fatty acids (PUFA) and red meat (heme iron). The incorporation of oxidation products such as 4-hydroxy-2-nonenal (4-HNE) into low-density lipoproteins is further correlated to endothelial dysfunction. Gastric postprandial stress could thus be reduced by antioxidant phytomicronutrients. The aim of this study was to investigate dietary lipid oxidation and its inhibition by apple polyphenols under different matrix forms (fresh fruit, puree, extract) under in vitro gastric digestion conditions. A deep insight was given into the two factors pH and pepsin governing the metmyoglobin-initiated lipid oxidation of sunflower oil-in-water emulsions simulating the physical state of dietary lipids. Our results first showed that pepsin accelerated lipid oxidation at pH 5 through the formation of a micro-metmyoglobin form likely displaying a higher accessibility to lipids. Spectroscopic studies further highlighted the formation of a reversible unfolded metmyoglobin form at pH 3 which was shown to be more pro-oxidant in the absence of pepsin. At nutritional levels, the three apple matrices inhibited less efficiently the accumulation of lipid-derived conjugated dienes and 4-HNE at pH 5 when pepsin was present whereas at pH 3 the opposite was true. High initial bioaccessibilities of monomeric phenolic compounds were evidenced for both puree (57-74%) and the phenolic extract (79-96%) compared to fresh apple (1-14%) supporting their greater antioxidant capacity. By contrast, the bioaccessibility of dimer B2 was low for all matrices suggesting non-covalent binding to apple pectins.


Assuntos
Digestão , Frutas/química , Malus/química , Metamioglobina/metabolismo , Pepsina A/metabolismo , Polifenóis/metabolismo , Aldeídos/metabolismo , Antioxidantes/metabolismo , Catequina/análise , Gorduras na Dieta , Emulsões , Concentração de Íons de Hidrogênio , Lipídeos , Oxirredução , Extratos Vegetais/química , Estômago , Óleo de Girassol , alfa-Tocoferol/análise
14.
Protein J ; 27(4): 258-66, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18459038

RESUMO

A beta-glucosidase enzyme activity was enriched from skins of ripe grape berry by cell wall fractionation, hydrophobic interaction and cation-exchange chromatographies. This enriched enzyme extract contained several beta-glycosidase activities hydrolyzing a wide range of synthetic and natural monoglycosides and diglycosides, as well as a beta-fructosidase activity. The enzyme extract was further characterized by two-dimensional gel electrophoresis coupled to peptide mass fingerprinting of eight spots using MALDI-TOF mass spectrometry. No beta-glucosidase but a beta-fructosidase associated to the relevant spot at 66 kDa/pI 5.1 was identified. Taken together all results issued from the biochemical characterization, the substrate specificity and the mass spectrometry-based identification of this enriched enzyme extract, we propose that this protein could be a specific beta-fructosidase isoform associated with a broad spectrum of beta-glycosidase activities in grape berry skin and involved in cell wall modifications which occur during the ripening-induced thickness of the grape.


Assuntos
Vitis/enzimologia , beta-Frutofuranosidase/isolamento & purificação , Parede Celular/enzimologia , Eletroforese em Gel Bidimensional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo
15.
Sci Rep ; 8(1): 5872, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651131

RESUMO

Mutations in mitochondrial DNA (mtDNA) lead to heteroplasmy, i.e., the intracellular coexistence of wild-type and mutant mtDNA strands, which impact a wide spectrum of diseases but also physiological processes, including endurance exercise performance in athletes. However, the phenotypic consequences of limited levels of naturally arising heteroplasmy have not been experimentally studied to date. We hence generated a conplastic mouse strain carrying the mitochondrial genome of an AKR/J mouse strain (B6-mtAKR) in a C57BL/6 J nuclear genomic background, leading to >20% heteroplasmy in the origin of light-strand DNA replication (OriL). These conplastic mice demonstrate a shorter lifespan as well as dysregulation of multiple metabolic pathways, culminating in impaired glucose metabolism, compared to that of wild-type C57BL/6 J mice carrying lower levels of heteroplasmy. Our results indicate that physiologically relevant differences in mtDNA heteroplasmy levels at a single, functionally important site impair the metabolic health and lifespan in mice.


Assuntos
Replicação do DNA/genética , DNA Mitocondrial/genética , Longevidade/genética , Mitocôndrias/genética , Animais , Glucose/genética , Glucose/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Camundongos , Mitocôndrias/patologia , Mutação
16.
Nat Commun ; 6: 6440, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25737238

RESUMO

Recent evidence suggests that natural selection operating on hosts to maintain their microbiome contributes to the emergence of new species, that is, the 'hologenomic basis of speciation'. Here we analyse the gut microbiota of two house mice subspecies, Mus musculus musculus and M. m. domesticus, across their Central European hybrid zone, in addition to hybrids generated in the lab. Hybrid mice display widespread transgressive phenotypes (that is, exceed or fall short of parental values) in a variety of measures of bacterial community structure, which reveals the importance of stabilizing selection operating on the intestinal microbiome within species. Further genetic and immunological analyses reveal genetic incompatibilities, aberrant immune gene expression and increased intestinal pathology associated with altered community structure among hybrids. These results provide unique insight into the consequences of evolutionary divergence in a vertebrate 'hologenome', which may be an unrecognized contributing factor to reproductive isolation in this taxonomic group.


Assuntos
Evolução Biológica , Microbioma Gastrointestinal/genética , Genoma/genética , Hibridização Genética/genética , Camundongos/genética , Modelos Genéticos , Animais , Sequência de Bases , Cruzamentos Genéticos , Primers do DNA/genética , Citometria de Fluxo , Genética Populacional , Alemanha , Camundongos/microbiologia , Dados de Sequência Molecular , Locos de Características Quantitativas , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie
17.
J Agric Food Chem ; 51(5): 1453-9, 2003 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-12590497

RESUMO

Six hundred ten yeast colonies isolated from various vineyards in Chile were screened for the presence of a beta-glucosidase activity as well as the resistance to glucose and ethanol inhibition. Among them, Debaryomyces vanrijiae was found to produce high levels of an extracelular beta-glucosidase which was tolerant to glucose (K(i) = 439 mM) and ethanol inhibitions. The enzyme (designated DV-BG) was purified to apparent homogeneity, respectively, by gel filtration, ion-exchange, and chromatofocusing techniques. Its molecular weight was 100 000, and its pI 3.0, optimum pH, and temperature activities were 5.0 and 40 degrees C, respectively, and had a V(max) of 47.6 micromol min(-)(1) mg(-)(1) and a K(m) of 1.07 mM. The enzyme was active against different beta-d-glucosides including glucosidic flavor precursors. The disaccharidic flavor precursors were not substrates for the enzyme. When added to a Muscat grape juice, the concentration of several monoterpenes increased as the consequence of its hydrolytic activity.


Assuntos
Ascomicetos/enzimologia , Bebidas/análise , Frutas/química , Monoterpenos/análise , Vitis/química , beta-Glucosidase/isolamento & purificação , beta-Glucosidase/metabolismo , Cromatografia , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peso Molecular , Monoterpenos/metabolismo , Especificidade por Substrato , Temperatura , beta-Glucosidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA