Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neurobiol Dis ; 152: 105300, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582224

RESUMO

Ganglioside-induced differentiation associated protein 1 (GDAP1) gene encodes a protein of the mitochondrial outer membrane and of the mitochondrial membrane contacts with the endoplasmic reticulum (MAMs) and lysosomes. Since mutations in GDAP1 cause Charcot-Marie-Tooth, an inherited motor and sensory neuropathy, its function is essential for peripheral nerve physiology. Our previous studies showed structural and functional defects in mitochondria and their contacts when GDAP1 is depleted. Nevertheless, the underlying axonal pathophysiological events remain unclear. Here, we have used embryonic motor neurons (eMNs) cultures from Gdap1 knockout (Gdap1-/-) mice to investigate in vivo mitochondria and calcium homeostasis in the axons. We imaged mitochondrial axonal transport and we found a defective pattern in the Gdap1-/- eMNs. We also detected pathological and functional mitochondria membrane abnormalities with a drop in ATP production and a deteriorated bioenergetic status. Another consequence of the loss of GDAP1 in the soma and axons of eMNs was the in vivo increase calcium levels in both basal conditions and during recovery after neuronal stimulation with glutamate. Further, we found that glutamate-stimulation of respiration was lower in Gdap1-/- eMNs showing that the basal bioenergetics failure jeopardizes a full respiratory response and prevents a rapid return of calcium to basal levels. Together, our results demonstrate that the loss of GDAP1 critically compromises the morphology and function of mitochondria and its relationship with calcium homeostasis in the soma and axons, offering important insight into the cellular mechanisms associated with axonal degeneration of GDAP1-related CMT neuropathies and the relevance that axon length may have.


Assuntos
Cálcio/metabolismo , Doença de Charcot-Marie-Tooth , Mitocôndrias/patologia , Neurônios Motores/patologia , Proteínas do Tecido Nervoso/deficiência , Animais , Transporte Axonal/fisiologia , Axônios/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia
2.
Proc Natl Acad Sci U S A ; 113(46): E7250-E7259, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799555

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by defective prelamin A processing, leading to nuclear lamina alterations, severe cardiovascular pathology, and premature death. Prelamin A alterations also occur in physiological aging. It remains unknown how defective prelamin A processing affects the cardiac rhythm. We show age-dependent cardiac repolarization abnormalities in HGPS patients that are also present in the Zmpste24-/- mouse model of HGPS. Challenge of Zmpste24-/- mice with the ß-adrenergic agonist isoproterenol did not trigger ventricular arrhythmia but caused bradycardia-related premature ventricular complexes and slow-rate polymorphic ventricular rhythms during recovery. Patch-clamping in Zmpste24-/- cardiomyocytes revealed prolonged calcium-transient duration and reduced sarcoplasmic reticulum calcium loading and release, consistent with the absence of isoproterenol-induced ventricular arrhythmia. Zmpste24-/- progeroid mice also developed severe fibrosis-unrelated bradycardia and PQ interval and QRS complex prolongation. These conduction defects were accompanied by overt mislocalization of the gap junction protein connexin43 (Cx43). Remarkably, Cx43 mislocalization was also evident in autopsied left ventricle tissue from HGPS patients, suggesting intercellular connectivity alterations at late stages of the disease. The similarities between HGPS patients and progeroid mice reported here strongly suggest that defective cardiac repolarization and cardiomyocyte connectivity are important abnormalities in the HGPS pathogenesis that increase the risk of arrhythmia and premature death.


Assuntos
Arritmias Cardíacas/fisiopatologia , Doença do Sistema de Condução Cardíaco/fisiopatologia , Progéria/fisiopatologia , Adolescente , Adulto , Animais , Arritmias Cardíacas/metabolismo , Cálcio/fisiologia , Doença do Sistema de Condução Cardíaco/metabolismo , Criança , Pré-Escolar , Conexina 43/metabolismo , Conexina 43/fisiologia , Feminino , Coração/fisiologia , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Lâmina Nuclear/fisiologia , Progéria/metabolismo , Retículo Sarcoplasmático/fisiologia , Adulto Jovem
3.
Biophys J ; 114(2): 343-354, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29401432

RESUMO

Cardiac ryanodine receptors (RyR2s) are Ca2+ release channels clustering in the sarcoplasmic reticulum membrane. These clusters are believed to be the elementary units of Ca2+ release. The distribution of these Ca2+ release units plays a critical role in determining the spatio-temporal profile and stability of sarcoplasmic reticulum Ca2+ release. RyR2 clusters located in the interior of cardiomyocytes are arranged in highly ordered arrays. However, little is known about the distribution and function of RyR2 clusters in the periphery of cardiomyocytes. Here, we used a knock-in mouse model expressing a green fluorescence protein (GFP)-tagged RyR2 to localize RyR2 clusters in live ventricular myocytes by virtue of their GFP fluorescence. Confocal imaging and total internal reflection fluorescence microscopy was employed to determine and compare the distribution of GFP-RyR2 in the interior and periphery of isolated live ventricular myocytes and in intact hearts. We found tightly ordered arrays of GFP-RyR2 clusters in the interior, as previously described. In contrast, irregular distribution of GFP-RyR2 clusters was observed in the periphery. Time-lapse total internal reflection fluorescence imaging revealed dynamic movements of GFP-RyR2 clusters in the periphery, which were affected by external Ca2+ and RyR2 activator (caffeine) and inhibitor (tetracaine), but little detectable movement of GFP-RyR2 clusters in the interior. Furthermore, simultaneous Ca2+- and GFP-imaging demonstrated that peripheral RyR2 clusters with an irregular distribution pattern are functional with a Ca2+ release profile similar to that in the interior. These results indicate that the distribution of RyR2 clusters in the periphery of live ventricular myocytes is irregular and dynamic, which is different from that of RyR2 clusters in the interior.


Assuntos
Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Sobrevivência Celular , Camundongos , Transporte Proteico
4.
Basic Res Cardiol ; 111(1): 5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611209

RESUMO

Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.


Assuntos
Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Células Cultivadas , Humanos , Microscopia Confocal , Técnicas de Patch-Clamp , Sus scrofa
5.
Biomed Opt Express ; 12(6): 3410-3422, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34221668

RESUMO

The phasor approach is a well-established method for data visualization and image analysis in spectral and lifetime fluorescence microscopy. Nevertheless, it is typically applied in a user-dependent manner by manually selecting regions of interest on the phasor space to find distinct regions in the fluorescence images. In this paper we present our work on using machine learning clustering techniques to establish an unsupervised and automatic method that can be used for identifying populations of fluorescent species in spectral and lifetime imaging. We demonstrate our method using both synthetic data, created by sampling photon arrival times and plotting the distributions on the phasor plot, and real live cells samples, by staining cellular organelles with a selection of commercial probes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA