Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Curr Opin Hematol ; 31(4): 168-174, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602152

RESUMO

PURPOSE OF REVIEW: Here, we review classic and emerging uses of umbilical cord blood and highlight strategies to improve its utility, focusing on selection of the appropriate units and cell types for the intended applications. RECENT LITERATURE: Recent studies have shown advancements in cord blood cell utility in a variety of cellular therapies and have made strides in elucidating manners to select the best units for therapy and target new ways to improve the various cell subpopulations for their respective applications. SUMMARY: Umbilical cord blood is a proven source of cells for hematopoietic cell transplantation and research and is an important potential source for additional cellular therapies. However, cord blood utility is limited by low "doses" of potent cells that can be obtained from individual units, a limitation that is specific to cord blood as a donor source. In addition to traditional CD34 + progenitor cells, cord blood lymphocytes are being pursued as therapeutic entities with their own unique properties and characteristics. Thus, selection of ideal units depends on the intended therapeutic entity and target, and identification of differential potency parameters is critical to drive effective banking strategies accommodating successful clinical use of cord blood in broader cell therapy settings.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Sangue Fetal , Humanos , Sangue Fetal/citologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo
2.
Biol Blood Marrow Transplant ; 21(4): 720-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25555450

RESUMO

We conducted a multicenter, phase 1 dose escalation study evaluating the safety of the allogeneic multipotent adult progenitor cell (MAPC, MultiStem, Athersys, Inc., Cleveland, OH) stromal product administered as an adjunct therapy to 36 patients after myeloablative allogeneic hematopoietic cell transplantation (HCT). Patients received increasing doses of MAPC (1, 5, or 10 million cells per kilogram recipient weight) as a single i.v. dose on day +2 after HCT (n = 18), or once weekly for up to 5 doses (1 or 5 million cells per kilogram; n = 18). Infusional and regimen-related toxicities were assessed for 30 days after the last MAPC dose. Of 36 allogeneic HCT donors (17 related and 19 unrelated), 35 were 6/6 HLA matched. MAPC infusions were well tolerated without associated infusional toxicity, graft failure, or increased incidence of infection. Median times to neutrophil (n = 36) and platelet (n = 31) engraftment were 15 (range, 11 to 25) and 16 (range, 11 to 41) days, respectively. The overall cumulative incidences of grades II to IV and III and IV acute graft-versus-host disease (GVHD) at day 100 were 37% and 14%, respectively (n = 36). In the group that received the highest single MAPC dose (10 million cells/kg), day 100 incidence of grade II to IV GVHD was 11.1% (1 of 9) with no observed cases of grade III and IV GVHD. We found no evidence for MHC class II allogeneic antibody induction, although some patients showed an increase in serum anticlass I titers compared with baseline. MAPC contribution to blood chimerism was negligible. These phase I data support the safety of stromal stem cell therapy and suggest that MAPC should be tested prospectively as a novel therapeutic option for GVHD prophylaxis after HCT.


Assuntos
Células-Tronco Adultas/transplante , Sobrevivência de Enxerto , Doença Enxerto-Hospedeiro/prevenção & controle , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Multipotentes/transplante , Doença Aguda , Adolescente , Adulto , Idoso , Aloenxertos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Cytotherapy ; 16(4): 566-75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24176542

RESUMO

BACKGROUND AIMS: Targeted recruitment of leukocytes to sites of inflammation is a crucial event in normal host defense against pathogens, and attachment to and rolling on activated endothelial cells is a prerequisite first step for eventual leukocyte extravasation into sites of inflammation. These key events are mediated by interactions between glycosylated ligands expressed on leukocytes and selectins expressed on activated endothelium. Cell surface expression of selectin ligands on leukocytes is regulated by the rate-limiting enzyme fucosyltransferase VII (Fut7), and in its absence extravasation of leukocytes is severely inhibited. Multipotent adult progenitor cells (MAPCs) are an adherent cell population isolated from adult bone marrow. Intravenous administration of MAPCs provided functional improvement in multiple pre-clinical models of injury or disease, but the mechanisms by which these outcomes were achieved remain poorly understood. METHODS: In vitro cell analysis studies including fluorescence-activated cell sorting, messenger RNA analysis, T-cell proliferation assays and endothelial cell binding assays were performed. RESULTS: The in vitro cell analysis studies characterized the ability of MAPCs to secrete factors that transcriptionally attenuate expression of Fut7 in T cells, blocking the terminal fucosylation event in the biosynthesis of selectin ligands and reducing T-cell binding to endothelial cells. CONCLUSIONS: This study presents the first example of a distinct regulatory mechanism involving transcriptional down-regulation of Fut7 by MAPCs that could modulate the trafficking behavior of T cells in vivo.


Assuntos
Fucosiltransferases/biossíntese , Ativação Linfocitária/genética , Células-Tronco Multipotentes/citologia , Transcrição Gênica , Adesão Celular/genética , Terapia Baseada em Transplante de Células e Tecidos , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Citometria de Fluxo , Fucosiltransferases/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Linfócitos T/enzimologia , Linfócitos T/metabolismo
4.
Cytotherapy ; 15(1): 9-19, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23260082

RESUMO

The evaluation of potency plays a key role in defining the quality of cellular therapy products (CTPs). Potency can be defined as a quantitative measure of relevant biologic function based on the attributes that are linked to relevant biologic properties. To achieve an adequate assessment of CTP potency, appropriate in vitro or in vivo laboratory assays and properly controlled clinical data need to be created. The primary objective of a potency assay is to provide a mechanism by which the manufacturing process and the final product for batch release are scrutinized for quality, consistency and stability. A potency assay also provides the basis for comparability assessment after process changes, such as scale-up, site transfer and new starting materials (e.g., a new donor). Potency assays should be in place for early clinical development, and validated assays are required for pivotal clinical trials. Potency is based on the individual characteristics of each individual CTP, and the adequacy of potency assays will be evaluated on a case-by-case basis by regulatory agencies. We provide an overview of the expectations and challenges in development of potency assays specific for CTPs; several real-life experiences from the cellular therapy industry are presented as illustrations. The key observation and message is that aggressive early investment in a solid potency evaluation strategy can greatly enhance eventual CTP deployment because it can mitigate the risk of costly product failure in late-stage development.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Humanos
5.
Cell Rep Med ; 4(11): 101259, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37913777

RESUMO

Umbilical cord blood transplantation is a life-saving treatment for malignant and non-malignant hematologic disorders. It remains unclear how long cryopreserved units remain functional, and the length of cryopreservation is often used as a criterion to exclude older units. We demonstrate that long-term cryopreserved cord blood retains similar numbers of hematopoietic stem and progenitor cells compared with fresh and recently cryopreserved cord blood units. Long-term cryopreserved units contain highly functional cells, yielding robust engraftment in mouse transplantation models. We also leverage differences between units to examine gene programs associated with better engraftment. Transcriptomic analyses reveal that gene programs associated with lineage determination and oxidative stress are enriched in high engrafting cord blood, revealing potential molecular markers to be used as potency markers for cord blood unit selection regardless of length of cryopreservation. In summary, cord blood units cryopreserved for extended periods retain engrafting potential and can potentially be used for patient treatment.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais , Camundongos , Humanos , Sangue Fetal , Criopreservação
6.
Cytotherapy ; 14(8): 994-1004, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22687190

RESUMO

BACKGROUND AIMS: Clinical results from acute myocardial infarction (AMI) patients treated with MultiStem®, a large-scale expanded adherent multipotent progenitor cell population (MAPC), have demonstrated a strong safety and benefit profile for these cells. The mechanism of benefit with MAPC treatment is a result, in part, of its ability to induce neovascularization through trophic support. Production of clinical-grade stem cell products requires the development of lot-release criteria based on potency assays that directly reflect the fundamental mechanistic pathway underlying the therapeutic response to verify manufacturing process consistency and product potency. METHODS AND RESULTS: Using an in vitro endothelial tube formation assay, a potency assay has been developed that reflects MAPC pro-angiogenic activity. Serum-free conditioned media collected from MAPC culture induced endothelial tube formation. A proteomic survey of angiogenic factors produced by the cells in vitro revealed candidate factors linked to angiogenic potency. Three cytokines, chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF), were required for this angiogenic activity. Depletion of any of these factors from the media prevented tube formation, while adding back increasing amounts of these cytokines into the depleted serum-free conditioned media established the lower limits of each of the cytokines required to induce angiogenesis. CONCLUSIONS: A necessary threshold of angiogenic factor expression was established using an in vitro angiogenesis assay. By correlating the levels of the cytokines required to induce tube formation in vitro with levels of the factors found in the spent media from manufacturing production runs, detection of these factors was identified as a surrogate potency assay with defined pass/fail criteria.


Assuntos
Técnicas de Cultura de Células , Terapia Baseada em Transplante de Células e Tecidos , Células Endoteliais/citologia , Células-Tronco Multipotentes/citologia , Neovascularização Fisiológica , Células da Medula Óssea/citologia , Diferenciação Celular , Meios de Cultivo Condicionados , Meios de Cultura Livres de Soro , Citocinas/metabolismo , Expressão Gênica , Humanos , Interleucina-8/metabolismo , Células-Tronco Multipotentes/transplante , Infarto do Miocárdio/terapia , Receptores Acoplados a Proteínas G/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Transplant Cell Ther ; 28(7): 410.e1-410.e5, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35311667

RESUMO

Cord blood (CB) stem cell transplantation offers a greater tolerance to HLA mismatches compared to adult-derived stem cell transplants (i.e., bone marrow or peripheral blood stem cells). Indeed, 4/6 or 5/8 HLA-matched CB transplantations are regularly performed for patients lacking a matched unrelated donor. Unfortunately, most banked CB units contain a stem cell dose that is too small to treat adult patients, resulting in only 4% to 5% of available CB units offering an adequate cell dose for prompt engraftment for adult patients. Ex vivo stem cell expansion appears to be an attractive strategy to circumvent this cell dose issue, while also enabling the selection of better HLA-matched CB units. In this study, we retrospectively performed HLA matching simulations to assess how the minimal cell content requirements associated with UM171 CB expansion may improve usability of existing CB unit inventories and donor availability for patients of different races and ethnicities. We analyzed a dataset of 58,971 adults for whom a donor search was initiated through the National Marrow Donor Program Be The Match registry against 142,942 CB units from major U.S. public CB banks listed on the Be The Match registry. Our results show that by enabling selection of smaller CB units, UM171-expanded CB transplantation increases donor availability from 72% to 84% for all patients compared to single unmanipulated CB transplantation. Furthermore, the low cell dose criteria for UM171-expanded CB also increases donor availability compared to double CB transplantation, while enabling better HLA matching between donor and recipient. UM171 expanded CB appears particularly beneficial for racial and ethnic minority patients as CB availability increases from 53% to 78% for African Americans, from 66% to 85% for Hispanics, and from 68% to 84% for Asians and Pacific Islanders, compared to single unmanipulated CB transplantation. In addition, UM171 expansion dramatically improves usability of CB units currently in inventories, as only 4.3% and 0.6% of banked CBs have sufficient cell doses for a 70 kg and 100 kg patient, respectively. UM171 raises this proportion to 53.8% and 20.2%, respectively, making CB banks potentially more cost effective. In conclusion, UM171 expansion allows the use of smaller CB units while also improving access to transplantation for racial and ethnic minorities.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Sangue Fetal , Adulto , Etnicidade , Humanos , Grupos Minoritários , Estudos Retrospectivos
8.
Stem Cell Rev Rep ; 17(1): 253-265, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33089452

RESUMO

Despite evidence that SARS-CoV-2 infection is systemic in nature, there is little known about the effects that SARS-CoV-2 infection or exposure has on many host cell types, including primitive and mature hematopoietic cells. The hematopoietic system is responsible for giving rise to the very immune cells that defend against viral infection and is a source of hematopoietic stem cells (HSCs) and progenitor cells (HPCs) which are used for hematopoietic cell transplantation (HCT) to treat hematologic disorders, thus there is a strong need to understand how exposure to the virus may affect hematopoietic cell functions. We examined the expression of ACE2, to which SARS-CoV-2 Spike (S) protein binds to facilitate viral entry, in cord blood derived HSCs/HPCs and in peripheral blood derived immune cell subtypes. ACE2 is expressed in low numbers of immune cells, higher numbers of HPCs, and up to 65% of rigorously defined HSCs. We also examined effects of exposing HSCs/HPCs and immune cells to SARS-CoV-2 S protein ex vivo. HSCs and HPCs expand less effectively and have less functional colony forming capacity when grown with S protein, while peripheral blood monocytes upregulate CD14 expression and show distinct changes in size and granularity. That these effects are induced by recombinant S protein alone and not the infectious viral particle suggests that simple exposure to SARS-CoV-2 may impact HSCs/HPCs and immune cells via S protein interactions with the cells, regardless of whether they can be infected. These data have implications for immune response to SARS-CoV-2 and for HCT. Graphical Abstract • Human HSCs, HPCs, and immune cells express ACE2 on the cell surface, making them potentially susceptible to SARS-CoV-2 infection. • SARS-CoV-2 S protein, which binds to ACE2, induces defects in the colony forming capacity of human HPC and inhibits the expansion of HSC/HPC subpopulations ex vivo. These effects can be at least partially neutralized by treatment with SARS-CoV-2 targeting antibody, recombinant human ACE2, or Angiotensin1-7. • S protein also induces aberrant morphological changes in peripheral blood derived monocytes ex vivo. • Thus, there are many different manners in which SARS-CoV-2 virus may impact the functional hematopoietic system, which has important implications for hematological manifestations of COVID-19 (i.e. thrombocytopenia and lymphopenia), immune response, and hematopoietic stem cell transplant in the era of COVID-19.


Assuntos
COVID-19/terapia , Transplante de Células-Tronco Hematopoéticas , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , COVID-19/patologia , COVID-19/virologia , Sangue Fetal/virologia , Células-Tronco Hematopoéticas/citologia , Humanos , Peptidil Dipeptidase A/genética , SARS-CoV-2/patogenicidade
9.
Stem Cells Transl Med ; 10(11): 1561-1574, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34397170

RESUMO

Cell-based therapy for the treatment of inflammatory disorders has focused on the application of mesenchymal stromal cells (MSCs) and multipotent adult progenitor cells (MAPCs). Despite the recent positive findings in industry-sponsored clinical trials of MSCs and MAPCs for graft vs host disease (GvHD), cell therapy is efficacious in some but not all patients, highlighting the need to identify strategies to enhance cell-based therapeutic efficacy. Here, we demonstrate the capacity for interferon (IFN)-γ licensing to enhance human MAPC efficacy and retention following early administration in a humanized mouse model of acute GvHD (aGvHD). Activation of the nuclear receptor peroxisome proliferator-activated receptor delta (PPARδ) negatively influenced the retention and efficacy of human MAPCs as well as IFN-γ-licensed MAPCs in the aGvHD model. PPARδ antagonism significantly enhanced the efficacy of human MAPCs when administered early in the humanized aGvHD model. COX-2 expression in human MAPC was significantly decreased in IFN-γ licensed MAPCs exposed to a PPARδ agonist. Importantly, MAPC exposure to the PPARδ antagonist in the presence of a COX-2 inhibitor indomethacin before administration significantly reduced the efficacy of PPARδ antagonized MAPCs in the aGvHD humanized mouse model. This is the first study to demonstrate the importance of PPARδ in human MAPC efficacy in vivo and highlights the importance of understanding the disease microenvironment in which cell-based therapies are to be administered. In particular, the presence of PPARδ ligands may negatively influence MAPC or MSC therapeutic efficacy.


Assuntos
Células-Tronco Adultas , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , PPAR delta , Animais , Doença Enxerto-Hospedeiro/terapia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco Multipotentes/metabolismo , PPAR delta/metabolismo
10.
Sci Rep ; 11(1): 10676, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021231

RESUMO

The key obstacle to clinical application of human inducible regulatory T cells (iTreg) as an adoptive cell therapy in autoimmune disorders is loss of FOXP3 expression in an inflammatory milieu. Here we report human iTreg co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs) during short-term ex vivo expansion enhances the stability of iTreg FOXP3 expression and suppressive function in vitro and in vivo, and further that a key mechanism of action is MSC mitochondrial (mt) transfer via tunneling nanotubules (TNT). MSC mt transfer is driven by mitochondrial metabolic function (CD39/CD73 signaling) in proliferating iTreg and promotes iTreg expression of FOXP3 stabilizing factors BACH2 and SENP3. These results elucidate cellular and molecular mechanisms underlying human MSC mt transfer to proliferating cells. MSC mt transfer stabilizes FOXP3 expression in iTregs, thereby enhancing and sustaining their suppressive function in inflammatory conditions in vitro and in vivo.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura , Cisteína Endopeptidases/metabolismo , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Humanos , Imunomodulação , Imunofenotipagem , Camundongos , Mitocôndrias/genética , Estabilidade Proteica , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
11.
Biol Blood Marrow Transplant ; 16(7): 891-906, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20018250

RESUMO

Regenerative stromal cell therapy (RSCT) has the potential to become a novel therapy for preventing and treating acute graft-versus-host disease (GVHD) in the allogeneic hematopoietic stem cell transplant (HSCT) recipient. However, enthusiasm for using RSCT in allogeneic HSCT has been tempered by limited clinical data and poorly defined in vivo mechanisms of action. As a result, the full clinical potential of RSCT in supporting hematopoietic reconstitution and as treatment for GVHD remains to be determined. This manuscript reviews the immunomodulatory activity of regenerative stromal cells in preclinical models of allogeneic HSCT, and emphasizes an emerging literature suggesting that microenvironment influences RSC activation and function. Understanding this key finding may ultimately define the proper niche for RSCT in allogeneic HSCT. In particular, mechanistic studies are needed to delineate the in vivo effects of RSCT in response to inflammation and injury associated with allogeneic HSCT, and to define the relevant sites of RSC interaction with immune cells in the transplant recipient. Furthermore, development of in vivo imaging technology to correlate biodistribution patterns, desired RSC effect, and clinical outcome will be crucial to establishing dose-response effects and minimal biologic dose thresholds needed to advance translational treatment strategies for complications like GVHD.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Medicina Regenerativa/métodos , Células Estromais/transplante , Humanos , Medicina Regenerativa/tendências , Condicionamento Pré-Transplante/métodos
12.
Cell Immunol ; 255(1-2): 55-60, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19022422

RESUMO

Adherent bone marrow adult stem cells have been used in the treatment of GVHD. In this study, we investigate the capacity of a newly characterized population of stem cells, the Multipotent Adult Progenitor Cells (MAPC), to modulate acute GVHD. These cells were derived from bone marrow cells and grown extensively without evidence for replicative senescence or loss of differentiating capacity. MAPC significantly decreased mortality of acute GVHD. Moreover, they were non immunogenic and they were not sensitive to NK-lysis. When these cells were added to a mixed lymphocyte reaction (MLR), a dose-dependent suppression of T cell proliferation was observed that was non-MHC restricted, was reversible upon removal of MAPC from culture and was mediated by soluble factors. These data show that in vitro expanded adult stem cells can efficiently control an allo-reactive response associated with acute GVHD, that they are immuno-privileged and present strong immunosuppressive properties.


Assuntos
Células-Tronco Adultas/fisiologia , Doença Enxerto-Hospedeiro , Células-Tronco Pluripotentes/fisiologia , Adulto , Células-Tronco Adultas/citologia , Animais , Linhagem Celular , Proliferação de Células , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Estimativa de Kaplan-Meier , Ativação Linfocitária , Teste de Cultura Mista de Linfócitos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/fisiologia , Células-Tronco Pluripotentes/citologia , Ratos , Ratos Endogâmicos BUF , Ratos Endogâmicos Lew , Linfócitos T/citologia , Linfócitos T/imunologia , Transplante Homólogo
13.
J Cell Biol ; 162(7): 1189-96, 2003 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-14517202

RESUMO

Integrin alpha6beta4 signaling proceeds through Src family kinase (SFK)-mediated phosphorylation of the cytoplasmic tail of beta4, recruitment of Shc, and activation of Ras and phosphoinositide-3 kinase. Upon cessation of signaling, alpha6beta4 mediates assembly of hemidesmosomes. Here, we report that part of alpha6beta4 is incorporated in lipid rafts. Metabolic labeling in combination with mutagenesis indicates that one or more cysteine in the membrane-proximal segment of beta4 tail is palmitoylated. Mutation of these cysteines suppresses incorporation of alpha6beta4 in lipid rafts, but does not affect alpha6beta4-mediated adhesion or assembly of hemidesmosomes. The fraction of alpha6beta4 localized to rafts associates with a palmitoylated SFK, whereas the remainder does not. Ligation of palmitoylation-defective alpha6beta4 does not activate SFK signaling to extracellular signal-regulated kinase and fails to promote keratinocyte proliferation in response to EGF. Thus, compartmentalization in lipid rafts is necessary to couple the alpha6beta4 integrin to a palmitoylated SFK and promote EGF-dependent mitogenesis.


Assuntos
Compartimento Celular/fisiologia , Integrina alfa6beta4/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Microdomínios da Membrana/fisiologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Humanos , Dados de Sequência Molecular , Ácido Palmítico/metabolismo , Ratos , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo
14.
Bone Marrow Transplant ; 53(12): 1568-1577, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29743573

RESUMO

Foxp3 is essential for T regulatory cell (Treg) function. Broad complex-Tramtrack-Bric-a-brac domain (BTB) and Cap'n'collar (CNC) homology 1, transcription factor 2 (BACH2) stabilizes Treg immune homeostasis in murine studies. However, little is known regarding what role, if any, BACH2 may have in Foxp3 regulation in human-induced Treg (iTreg). We examined Foxp3 expression and regulation comparing iTreg differentiated from umbilical cord blood (UCB) vs. adult blood (AB) naive CD4+ T-cells. Foxp3 expression was higher in UCB vs. AB-derived iTreg, and was sustained during 21-day expansion in vitro. The number of Foxp3+ iTreg generated from UCB vs. AB naive CD4+ T-cells was higher in iTreg differentiation conditions. In addition, UCB iTreg were more potent in suppressing T-cell proliferation compared to AB iTreg. Naive UCB CD4+ T-cells highly expressed BACH2 protein compared to AB. Putative transcriptional BACH2 binding sites were identified at the Foxp3 promoter, using BACH2 consensus sequence. Cross-linking chromatin immunoprecipitation (ChIP) showed that BACH2 binds to the Foxp3 proximal promoter in UCB iTreg, but not AB iTreg. BACH2 was transcriptionally active, as shRNA-mediated BACH2 knockdown resulted in reduction of Foxp3 gene transcription in UCB CD4+ T-cells. In summary, BACH2 serves to stabilize robust Foxp3 expression in UCB CD4+ T-cell-derived iTreg.


Assuntos
Sangue Fetal/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/imunologia , Diferenciação Celular , Humanos
16.
IEEE Trans Med Imaging ; 35(3): 819-29, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26552080

RESUMO

With its single cell sensitivity over volumes as large as or larger than a mouse, cryo-imaging enables imaging of stem cell biodistribution, homing, engraftment, and molecular mechanisms. We developed and evaluated a highly automated software tool to detect fluorescently labeled stem cells within very large ( âˆ¼ 200 GB) cryo-imaging datasets. Cell detection steps are: preprocess, remove immaterial regions, spatially filter to create features, identify candidate pixels, classify pixels using bagging decision trees, segment cell patches, and perform 3D labeling. There are options for analysis and visualization. To train the classifier, we created synthetic images by placing realistic digital cell models onto cryo-images of control mice devoid of cells. Very good cell detection results were (precision=98.49%, recall=99.97%) for synthetic cryo-images, (precision=97.81%, recall=97.71%) for manually evaluated, actual cryo-images, and false positives in control mice. An α-multiplier applied to features allows one to correct for experimental variations in cell brightness due to labeling. On dim cells (37% of standard brightness), with correction, we improved recall (49.26%→ 99.36%) without a significant drop in precision (99.99%→ 99.75%) . With tail vein injection, multipotent adult progenitor cells in a graft-versus-host-disease model in the first days post injection were predominantly found in lung, liver, spleen, and bone marrow. Distribution was not simply related to blood flow. The lung contained clusters of cells while other tissues contained single cells. Our methods provided stem cell distribution anywhere in mouse with single cell sensitivity. Methods should provide a rational means of evaluating dosing, delivery methods, cell enhancements, and mechanisms for therapeutic cells.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Células-Tronco/citologia , Imagem Corporal Total/métodos , Algoritmos , Animais , Feminino , Camundongos , Distribuição Tecidual
17.
Methods Mol Biol ; 1235: 49-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25388385

RESUMO

Culture procedures are presented that support the initiation and controlled expansion of the multipotent adult progenitor cell (MAPC) population within the human bone marrow derived multipotent mesenchymal stromal cell compartment. Culture procedures or conditions and characterization assays that maintain and survey the distinctive primitive MAPC properties are discussed in the context of cell culturing platforms that facilitate controlled expansion of clinical grade human MAPC product to levels required for mid to late stage clinical testing.


Assuntos
Células-Tronco Adultas/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco Multipotentes/citologia , Adulto , Separação Celular/métodos , Células Cultivadas , Criopreservação/métodos , Humanos
18.
Stem Cells Transl Med ; 4(12): 1436-49, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26494783

RESUMO

UNLABELLED: Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in clinical trials for acute graft versus host disease with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Anti-CD3/anti-CD28 (3/28) activation of T cells within the peripheral blood mononuclear cell (PBMC) compartment was performed in the presence or absence of MAPCs. Liquid chromatography-coupled tandem mass spectrometry was used to characterize the differential secretion of proteins, and transcriptional profiling was used to monitor mRNA expression changes in both cell populations. Overall, 239 secreted and/or ectodomain-shed proteins were detected in the secretomes of PBMCs and MAPCs. In addition, 3/28 activation of PBMCs induced differential expression of 2,925 genes, and 22% of these transcripts were differentially expressed on exposure to MAPCs in Transwell. MAPCs exposed to 3/28-activated PBMCs showed differential expression of 1,247 MAPC genes. Crosstalk was demonstrated by reciprocal transcriptional regulation. Secretome proteins and transcriptional signatures were used to predict molecular activities by which MAPCs could dampen local and systemic inflammatory responses. These data support the hypothesis that MAPCs block PBMC proliferation via cell cycle arrest coupled to metabolic stress in the form of tryptophan depletion, resulting in GCN2 kinase activation, downstream signaling, and inhibition of cyclin D1 translation. These data also provide a plausible explanation for the immune privilege reported with administration of donor MAPCs. Although most components of the major histocompatibility complex class II antigen presentation pathway were markedly transcriptionally upregulated, cell surface expression of human leukocyte antigen-DR is minimal on MAPCs exposed to 3/28-activated PBMCs. SIGNIFICANCE: This study documents experiments quantifying solution-phase crosstalk between multipotent adult progenitor cells (MAPCs) and peripheral blood mononuclear cells. The secretome and transcriptional changes quantified suggest mechanisms by which MAPCs are hypothesized to provide both local and systemic immunoregulation of inflammation. The potential impact of these studies includes development of a robust experimental framework to be used for preclinical evaluation of the specific mechanisms by which beneficial effects are obtained after treatment of patients with MAPCs.


Assuntos
Células-Tronco Adultas/metabolismo , Comunicação Celular , Regulação da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Células-Tronco Multipotentes/metabolismo , Adulto , Células-Tronco Adultas/citologia , Técnicas de Cocultura , Feminino , Humanos , Leucócitos Mononucleares/citologia , Masculino , Células-Tronco Multipotentes/citologia
19.
Cell Transplant ; 22(10): 1915-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23031260

RESUMO

Multipotent adult progenitor cells (MAPCs) are bone marrow-derived nonhematopoietic stem cells with a broad differentiation potential and extensive expansion capacity. A comparative study between human mesenchymal stem cells (hMSCs) and human MAPCs (hMAPCs) has shown that hMAPCs have clearly distinct phenotypical and functional characteristics from hMSCs. In particular, hMAPCs express lower levels of MHC class I than hMSCs and cannot only differentiate into typical mesenchymal cell types but can also differentiate in vitro and in vivo into functional endothelial cells. The use of hMSCs as cellular immunomodulatory stem cell products gained much interest since their immunomodulatory capacities in vitro became evident over the last decade. Currently, the clinical grade stem cell product of hMAPCs is already used in clinical trials to prevent graft-versus-host disease (GVHD), as well as for the treatment of acute myocardial infarct, ischemic stroke, and Crohn's disease. Therefore, we studied the immune phenotype, immunogenicity, and immunosuppressive effect of hMAPCs in vitro. We demonstrated that hMAPCs are nonimmunogenic for T-cell proliferation and cytokine production. In addition, hMAPCs exert strong immunosuppressive effects on T-cell alloreactivity and on T-cell proliferation induced by mitogens and recall antigens. This immunomodulatory effect was not MHC restricted, which makes off-the-shelf use promising. The immunosuppressive effect of hMAPCs is partially mediated via soluble factors and dependent on indoleamine 2,3-dioxygenase (IDO) activity. At last, we isolated hMAPCs, the clinical grade stem cell product of hMAPCs, named MultiStem, and hMSCs from one single donor and observed that both the immunogenicity and the immunosuppressive capacities of all three stem cell products are comparable in vitro. In conclusion, hMAPCs have potent immunomodulatory properties in vitro and can serve as a valuable cell source for the clinical use of immunomodulatory cellular stem cell product.


Assuntos
Células-Tronco Multipotentes/imunologia , Linfócitos T/imunologia , Adulto , Aloenxertos , Células da Medula Óssea/citologia , Proliferação de Células , Células Cultivadas , Criança , Citocinas/metabolismo , Feminino , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Masculino , Pessoa de Meia-Idade , Células-Tronco Multipotentes/citologia , Linfócitos T/citologia , Linfócitos T/metabolismo
20.
Stem Cells Transl Med ; 2(11): 871-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24101671

RESUMO

Cell therapy is poised to play an enormous role in regenerative medicine. However, little guidance is being made available to academic and industrial entities in the start-up phase. In this technical review, members of the International Society for Cell Therapy provide guidance in developing commercializable autologous and patient-specific manufacturing strategies from the perspective of process development. Special emphasis is placed on providing guidance to small academic or biotech researchers as to what simple questions can be addressed or answered at the bench in order to make their cell therapy products more feasible for commercial-scale production. We discuss the processes that are required for scale-out at the manufacturing level, and how many questions can be addressed at the bench level. The goal of this review is to provide guidance in the form of topics that can be addressed early in the process of development to better the chances of the product being successful for future commercialization.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/normas , Medicina Regenerativa/normas , Humanos , Transplante Autólogo/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA