Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2200511119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36194631

RESUMO

Mind blanking (MB) is a waking state during which we do not report any mental content. The phenomenology of MB challenges the view of a constantly thinking mind. Here, we comprehensively characterize the MB's neurobehavioral profile with the aim to delineate its role during ongoing mentation. Using functional MRI experience sampling, we show that the reportability of MB is less frequent, faster, and with lower transitional dynamics than other mental states, pointing to its role as a transient mental relay. Regarding its neural underpinnings, we observed higher global signal amplitude during MB reports, indicating a distinct physiological state. Using the time-varying functional connectome, we show that MB reports can be classified with high accuracy, suggesting that MB has a unique neural composition. Indeed, a pattern of global positive-phase coherence shows the highest similarity to the connectivity patterns associated with MB reports. We interpret this pattern's rigid signal architecture as hindering content reportability due to the brain's inability to differentiate signals in an informative way. Collectively, we show that MB has a unique neurobehavioral profile, indicating that nonreportable mental events can happen during wakefulness. Our results add to the characterization of spontaneous mentation and pave the way for more mechanistic investigations of MB's phenomenology.


Assuntos
Mapeamento Encefálico , Conectoma , Pensamento , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética
2.
J Neurosci ; 43(40): 6807-6815, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37643862

RESUMO

Mind-blanking (MB) is termed as the inability to report our immediate-past mental content. In contrast to mental states with reportable content, such as mind-wandering or sensory perceptions, the neural correlates of MB started getting elucidated only recently. A notable particularity that pertains to MB studies is the way MB is instructed for reporting, like by deliberately asking participants to "empty their minds." Such instructions were shown to induce fMRI activations in frontal brain regions, typically associated with metacognition and self-evaluative processes, suggesting that MB may be a result of intentional mental content suppression. Here, we aim at examining this hypothesis by determining the neural correlates of MB without induction. Using fMRI combined with experience-sampling in 31 participants (22 female), univariate analysis of MB reports revealed deactivations in occipital, frontal, parietal, and thalamic areas, but no activations in prefrontal regions. These findings were confirmed using Bayesian region-of-interest analysis on areas previously shown to be implicated in induced MB, where we report evidence for frontal deactivations during MB reports compared with other mental states. Contrast analysis between reports of MB and content-oriented mental states also revealed deactivations in the left angular gyrus. We propose that these effects characterize a neuronal profile of MB, where key thalamocortical nodes are unable to communicate and formulate reportable content. Collectively, we show that study instructions for MB lead to differential neural activation. These results provide mechanistic insights linked to the phenomenology of MB and point to the possibility of MB being expressed in different forms.SIGNIFICANCE STATEMENT This study explores how brain activity changes when individuals report unidentifiable thoughts, a phenomenon known as mind-blanking (MB). It aims to detect changes in brain activations and deactivations when MB is reported spontaneously, as opposed to the neural responses that have been previously reported when MB is induced. By means of brain imaging and experience-sampling, the study points to reduced brain activity in a wide number of regions, including those mesio-frontally which were previously detected as activated during induced MB. These results enhance our understanding of the complexity of spontaneous thinking and contribute to broader discussions on consciousness and reportable experience.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Feminino , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Estado de Consciência/fisiologia , Lobo Parietal/fisiologia , Imageamento por Ressonância Magnética
3.
Cereb Cortex ; 30(5): 2997-3014, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31813984

RESUMO

An influential theoretical account of working memory (WM) considers that WM is based on direct activation of long-term memory knowledge. While there is empirical support for this position in the visual WM domain, direct evidence is scarce in the verbal WM domain. This question is critical for models of verbal WM, as the question of whether short-term maintenance of verbal information relies on direct activation within the long-term linguistic knowledge base or not is still debated. In this study, we examined the extent to which short-term maintenance of lexico-semantic knowledge relies on neural activation patterns in linguistic cortices, and this by using a fast encoding running span task for word and nonword stimuli minimizing strategic encoding mechanisms. Multivariate analyses showed specific neural patterns for the encoding and maintenance of word versus nonword stimuli. These patterns were not detectable anymore when participants were instructed to stop maintaining the memoranda. The patterns involved specific regions within the dorsal and ventral pathways, which are considered to support phonological and semantic processing to various degrees. This study provides novel evidence for a role of linguistic cortices in the representation of long-term memory linguistic knowledge during WM processing.


Assuntos
Encéfalo/fisiologia , Aprendizagem por Discriminação/fisiologia , Linguística/métodos , Memória de Curto Prazo/fisiologia , Desempenho Psicomotor/fisiologia , Aprendizagem Verbal/fisiologia , Estimulação Acústica/métodos , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
4.
J Cogn Neurosci ; 29(1): 95-113, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27575531

RESUMO

Neuroimaging studies have revealed the recruitment of a range of neural networks during the resting state, which might reflect a variety of cognitive experiences and processes occurring in an individual's mind. In this study, we focused on the default mode network (DMN) and attentional networks and investigated their association with distinct mental states when participants are not performing an explicit task. To investigate the range of possible cognitive experiences more directly, this study proposes a novel method of resting-state fMRI experience sampling, informed by a phenomenological investigation of the fluctuation of mental states during the resting state. We hypothesized that DMN activity would increase as a function of internal mentation and that the activity of dorsal and ventral networks would indicate states of top-down versus bottom-up attention at rest. Results showed that dorsal attention network activity fluctuated as a function of subjective reports of attentional control, providing evidence that activity of this network reflects the perceived recruitment of controlled attentional processes during spontaneous cognition. Activity of the DMN increased when participants reported to be in a subjective state of internal mentation, but not when they reported to be in a state of perception. This study provides direct evidence for a link between fluctuations of resting-state neural activity and fluctuations in specific cognitive processes.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Adulto , Análise de Variância , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cognição/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Descanso , Adulto Jovem
5.
Cereb Cortex ; 26(1): 166-79, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25146374

RESUMO

Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM.


Assuntos
Atenção/fisiologia , Cognição/fisiologia , Memória de Curto Prazo/fisiologia , Desempenho Psicomotor/fisiologia , Aprendizagem Verbal/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
6.
Neuropsychologia ; 145: 106747, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-29627273

RESUMO

Immature cognition is susceptible to interference from competing information, and particularly in affectively charged situations. Several studies have reported activation in the anterior cingulate cortex, prefrontal cortex and amygdala associated with emotional conflict processing in adults but literature is lacking regarding children. Moreover, studies in children and adolescents still disagree regarding the functional activation of amygdala related to facial stimuli. In the purpose of investigating both the effect of socio-emotional stimuli and its interaction with interference control, we designed a flanker task associated with an event-related fMRI paradigm in 30 healthy children ages 9-11. In addition to happy, angry and neutral faces, we presented scrambled stimuli to examine a potential effect of faces. Regarding both brain and behavior results, no effect of emotional valence was observed. However, both results evidenced an emotional effect of faces compared with scrambled stimuli. This was expressed by faster RTs associated with increased amygdala activity and activation of the ventral ACC, in congruent trials only. When scrambled were inversely compared to faces, increased activity was observed within the lateral prefrontal cortex. Regarding the amygdala, the results suggest that in late school age children, activity in the amygdala seemed to underlie the socio-emotional effect induced by faces but not the emotional conflict. Studying brain regions involved in emotion regulation is important to further understand neurodevelopmental disorders and psychopathologies, particularly in late childhood and adolescence.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Emoções , Expressão Facial , Ira , Criança , Dissidências e Disputas , Feminino , Felicidade , Humanos , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA