Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Child Adolesc Psychol ; 51(5): 701-714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33769133

RESUMO

OBJECTIVE: Avoidant/restrictive food intake disorder (ARFID) occurs across the weight spectrum, however research addressing the coexistesnce of ARFID with overweight/obesity (OV/OB) is lacking. We aimed to establish co-occurrence of OV/OB and ARFID and to characterize divergent neurobiological features of ARFID by weight. METHOD: Youth with full/subthreshold ARFID (12 with healthy weight [HW], 11 with OV/OB) underwent fasting brain fMRI scan while viewing food/non-food images (M age = 16.92 years, 65% female, 87% white). We compared groups on BOLD response to high-calorie foods (HCF) (vs. objects) in food cue processing regions of interest. Following fMRI scanning, we evaluated subjective hunger pre- vs. post-meal. We used a mediation model to explore the association between BMI, brain activation, and hunger. RESULTS: Participants with ARFID and OV/OB demonstrated significant hyperactivation in response to HCF (vs. objects) in the orbitofrontal cortex (OFC) and anterior insula compared with HW participants with ARFID. Mediation analysis yielded a significant indirect effect of group (HW vs. OV/OB) on hunger via OFC activation (effect = 18.39, SE = 11.27, 95% CI [-45.09, -3.00]), suggesting that OFC activation mediates differences in hunger between ARFID participants with HW and OV/OB. CONCLUSIONS: Compared to youth with ARFID and HW, those with OV/OB demonstrate hyperactivation of brain areas critical for the reward value of food cues. Postprandial changes in subjective hunger depend on BMI and are mediated by OFC activation to food cues. Whether these neurobiological differences contribute to selective hyperphagia in ARFID presenting with OV/OB and represent potential treatment targets is an important area for future investigation.


Assuntos
Transtorno Alimentar Restritivo Evitativo , Transtornos da Alimentação e da Ingestão de Alimentos , Adolescente , Ingestão de Alimentos , Feminino , Humanos , Fome/fisiologia , Masculino , Obesidade/psicologia , Sobrepeso , Estudos Retrospectivos
2.
Transl Psychiatry ; 13(1): 220, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353543

RESUMO

Anorexia nervosa (AN) and atypical AN (AtypAN) are complex neurobiological illnesses that typically onset in adolescence with an often treatment-refractory and chronic illness trajectory. Aberrant eating behaviors in this population have been linked to abnormalities in food reward and cognitive control, but prior studies have not examined respective contributions of clinical characteristics and metabolic state. Research is needed to identify specific disruptions and inform novel intervention targets to improve outcomes. Fifty-nine females with AN (n = 34) or AtypAN (n = 25), ages 10-22 years, all ≤90% expected body weight, and 34 age-matched healthy controls (HC) completed a well-established neuroimaging food cue paradigm fasting and after a standardized meal, and we used ANCOVA models to investigate main and interaction effects of Group and Appetitive State on blood oxygenation level-dependent (BOLD) activation for the contrast of exposure to high-calorie food images minus objects. We found main effects of Group with greater BOLD activation in the dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (DLPFC), hippocampus, caudate, and putamen for AN/AtypAN versus HC groups, and in the three-group model including AN, AtypAN, and HC (sub-)groups, where differences were primarily driven by greater activation in the AtypAN subgroup versus HC group. We found a main effect of Appetitive State with increased premeal BOLD activation in the hypothalamus, amygdala, nucleus accumbens, and caudate for models that included AN/AtypAN and HC groups, and in BOLD activation in the nucleus accumbens for the model that included AN, AtypAN, and HC (sub-)groups. There were no interaction effects of Group with Appetitive State for any of the models. Our findings demonstrate robust feeding-state independent group effects reflecting greater neural activation of specific regions typically associated with reward and cognitive control processing across AN and AtypAN relative to healthy individuals in this food cue paradigm. Differential activation of specific brain regions in response to the passive viewing of high-calorie food images may underlie restrictive eating behavior in this clinical population.


Assuntos
Anorexia Nervosa , Adolescente , Feminino , Humanos , Anorexia Nervosa/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Alimentos , Cognição , Recompensa
3.
Syst Rev ; 10(1): 247, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517926

RESUMO

BACKGROUND: Anorexia nervosa (AN) is associated with structural brain abnormalities. Studies have reported less cerebral tissue and more cerebrospinal fluid (CSF) in individuals with AN relative to healthy controls, although findings are variable and inconsistent due to variations in sample size, age, and disease state (e.g., active AN, weight-recovered AN). Further, it remains unclear if structural brain abnormalities observed in AN are a consequence of specific brain pathologies or malnutrition, as very few longitudinal neuroimaging studies in AN have been completed. METHODS: To overcome this issue, this comprehensive meta-analysis will combine region-of-interest (ROI) and voxel-based morphometry (VBM) approaches to understand how regional and global structural brain abnormalities differ among individuals with AN and healthy controls (HCs). Additionally, we aim to understand how clinical characteristics and physiological changes during the course of illness, including acute illness vs. weight recovery, may moderate these structural abnormalities. We will create an online database of studies that have investigated structural brain abnormalities in AN. Data will be reviewed independently by two members of our team using MEDLINE databases, Web of Science, PsycINFO, EMBASE, and CINAHL. We will conduct ROI and VBM meta-analysis using seed-based d mapping in AN and HCs. We will include all studies that include structural neuroimaging of individuals with AN (both acute and weight-recovered) and HCs between January 1997 and 2020. DISCUSSION: This systematic review will assess the effects of AN compared to HC on brain structure. Futhermore, it will explore the role of acute AN and weight-recovered AN on brain structure. Findings will help researchers and clinicians to better understand the course of illness in AN and the nature of recovery, in terms of weight, malnutrition, and the state of the brain. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020180921.


Assuntos
Anorexia Nervosa , Anorexia Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Metanálise como Assunto , Neuroimagem , Revisões Sistemáticas como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA