Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Phycol ; 53(6): 1325-1339, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28949419

RESUMO

Dinoflagellates are prolific producers of polyketide compounds, many of which are potent toxins with adverse impacts on human and marine animal health. To identify polyketide synthase (PKS) genes in the brevetoxin-producing dinoflagellate, Karenia brevis, we assembled a transcriptome from 595 million Illumina reads, sampled under different growth conditions. The assembly included 125,687 transcripts greater than 300 nt in length, with over half having >100× coverage. We found 121 transcripts encoding Type I ketosynthase (KS) domains, of which 99 encoded single KS domains, while 22 contained multiple KS domains arranged in 1-3 protein modules. Phylogenetic analysis placed all single domain and a majority of multidomain KSs within a monophyletic clade of protist PKSs. In contrast with the highly amplified single-domain KSs, only eight single-domain ketoreductase transcripts were found in the assembly, suggesting that they are more evolutionarily conserved. The multidomain PKSs were dominated by trans-acyltransferase architectures, which were recently shown to be prevalent in other algal protists. Karenia brevis also expressed several hybrid nonribosomal peptide synthetase (NRPS)/PKS sequences, including a burA-like sequence previously reported in a wide variety of dinoflagellates. This contrasts with a similarly deep transcriptome of Gambierdiscus polynesiensis, which lacked NRPS/PKS other than the burA-like transcript, and may reflect the presence of amide-containing polyketides in K. brevis and their absence from G. polynesiensis. In concert with other recent transcriptome analyses, this study provides evidence for both single domain and multidomain PKSs in the synthesis of polyketide compounds in dinoflagellates.


Assuntos
Dinoflagellida/genética , Policetídeo Sintases/genética , Proteínas de Protozoários/genética , Dinoflagellida/metabolismo , Filogenia , Policetídeo Sintases/metabolismo , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA , Transcriptoma
2.
BMC Genomics ; 17: 720, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27608714

RESUMO

BACKGROUND: The blood transcriptome can reflect both systemic exposures and pathological changes in other organs of the body because immune cells recirculate through the blood, lymphoid tissues, and affected sites. In human and veterinary medicine, blood transcriptome analysis has been used successfully to identify markers of disease or pathological conditions, but can be confounded by large seasonal changes in expression. In comparison, the use of transcriptomic based analyses in wildlife has been limited. Here we report a longitudinal study of four managed bottlenose dolphins located in Waikoloa, Hawaii, serially sampled (approximately monthly) over the course of 1 year to establish baseline information on the content and variation of the dolphin blood transcriptome. RESULTS: Illumina based RNA-seq analyses were carried out using both the Ensembl dolphin genome and a de novo blood transcriptome as guides. Overall, the blood transcriptome encompassed a wide array of cellular functions and processes and was relatively stable within and between animals over the course of 1 year. Principal components analysis revealed moderate clustering by sex associated with the variation among global gene expression profiles (PC1, 22 % of variance). Limited seasonal change was observed, with < 2.5 % of genes differentially expressed between winter and summer months (FDR < 0.05). Among the differentially expressed genes, cosinor analysis identified seasonal rhythmicity for the observed changes in blood gene expression, consistent with studies in humans. While the proportion of seasonally variant genes in these dolphins is much smaller than that reported in humans, the majority of those identified in dolphins were also shown to vary with season in humans. Gene co-expression network analysis identified several gene modules with significant correlation to age, sex, or hematological parameters. CONCLUSIONS: This longitudinal analysis of healthy managed dolphins establishes a preliminary baseline for blood transcriptome analysis in this species. Correlations with hematological parameters, distinct from muted seasonal effects, suggest that the otherwise relatively stable blood transcriptome may be a useful indicator of health and exposure. A robust database of gene expression in free-ranging and managed dolphins across seasons with known adverse health conditions or contaminant exposures will be needed to establish predictive gene expression profiles suitable for biomonitoring.


Assuntos
Golfinho Nariz-de-Garrafa/genética , Nível de Saúde , Estações do Ano , Transcriptoma , Animais , Biomarcadores , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Anotação de Sequência Molecular , Análise de Sequência de RNA , Fatores Sexuais
3.
Proc Natl Acad Sci U S A ; 110(25): 10223-8, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23754363

RESUMO

With the global proliferation of toxic harmful algal bloom species, there is a need to identify the environmental and biological factors that regulate toxin production. One such species, Karenia brevis, forms nearly annual blooms that threaten coastal regions throughout the Gulf of Mexico. This dinoflagellate produces brevetoxins, which are potent neurotoxins that cause neurotoxic shellfish poisoning and respiratory illness in humans, as well as massive fish kills. A recent publication reported that a rapid decrease in salinity increased cellular toxin quotas in K. brevis and hypothesized that brevetoxins serve a role in osmoregulation. This finding implied that salinity shifts could significantly alter the toxic effects of blooms. We repeated the original experiments separately in three different laboratories and found no evidence for increased brevetoxin production in response to low-salinity stress in any of the eight K. brevis strains we tested, including three used in the original study. Thus, we find no support for an osmoregulatory function of brevetoxins. The original publication also stated that there was no known cellular function for brevetoxins. However, there is increasing evidence that brevetoxins promote survival of the dinoflagellates by deterring grazing by zooplankton. Whether they have other as-yet-unidentified cellular functions is currently unknown.


Assuntos
Dinoflagellida/metabolismo , Eutrofização/fisiologia , Proliferação Nociva de Algas/fisiologia , Toxinas Marinhas/metabolismo , Pressão Osmótica/fisiologia , Oxocinas/metabolismo , Dinoflagellida/fisiologia , Golfo do México , Toxinas Marinhas/biossíntese , Salinidade , Água do Mar , Equilíbrio Hidroeletrolítico/fisiologia
4.
J AOAC Int ; 95(3): 795-812, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22816272

RESUMO

A collaborative study was conducted on a microplate format receptor binding assay (RBA) for paralytic e shellfish toxins (PST). The assay quantifies the composite PST toxicity in shellfish samples based on the ability of sample extracts to compete with (3)H saxitoxin (STX) diHCl for binding to voltage-gated sodium channels in a rat brain membrane preparation. Quantification of binding can be carried out using either a microplate or traditional scintillation counter; both end points were included in this study. Nine laboratories from six countries completed the study. One laboratory analyzed the samples using the precolumn oxidation HPLC method (AOAC Method 2005.06) to determine the STX congener composition. Three laboratories performed the mouse bioassay (AOAC Method 959.08). The study focused on the ability of the assay to measure the PST toxicity of samples below, near, or slightly above the regulatory limit of 800 (microg STX diHCl equiv./kg). A total of 21 shellfish homogenates were extracted in 0.1 M HCl, and the extracts were analyzed by RBA in three assays on separate days. Samples included naturally contaminated shellfish samples of different species collected from several geographic regions, which contained varying STX congener profiles due to their exposure to different PST-producing dinoflagellate species or differences in toxin metabolism: blue mussel (Mytilus edulis) from the U.S. east and west coasts, California mussel (Mytilus californianus) from the U.S. west coast, chorito mussel (Mytilus chiliensis) from Chile, green mussel (Perna canaliculus) from New Zealand, Atlantic surf clam (Spisula solidissima) from the U.S. east coast, butter clam (Saxidomus gigantea) from the west coast of the United States, almeja clam (Venus antiqua) from Chile, and Atlantic sea scallop (Plactopecten magellanicus) from the U.S. east coast. All samples were provided as whole animal homogenates, except Atlantic sea scallop and green mussel, from which only the hepatopancreas was homogenized. Among the naturally contaminated samples, five were blind duplicates used for calculation of RSDr. The interlaboratory RSDR of the assay for 21 samples tested in nine laboratories was 33.1%, yielding a HorRat value of 2.0. Removal of results for one laboratory that reported systematically low values resulted in an average RSDR of 28.7% and average HorRat value of 1.8. Intralaboratory RSDr based on five blind duplicate samples tested in separate assays, was 25.1%. RSDr obtained by individual laboratories ranged from 11.8 to 34.9%. Laboratories that are routine users of the assay performed better than nonroutine users, with an average RSDr of 17.1%. Recovery of STX from spiked shellfish homogenates was 88.1-93.3%. Correlation with the mouse bioassay yielded a slope of 1.64 and correlation coefficient (r(2)) of 0.84, while correlation with the precolumn oxidation HPLC method yielded a slope of 1.20 and an r(2) of 0.92. When samples were sorted according to increasing toxin concentration (microg STX diHCl equiv./kg) as assessed by the mouse bioassay, the RBA returned no false negatives relative to the 800 microg STX diHCl equiv./kg regulatory limit for shellfish. Currently, no validated methods other than the mouse bioassay directly measure a composite toxic potency for PST in shellfish. The results of this interlaboratory study demonstrate that the RBA is suitable for the routine determination of PST in shellfish in appropriately equipped laboratories.


Assuntos
Toxinas Marinhas/análise , Frutos do Mar/análise , Animais , Bioensaio , Cromatografia Líquida de Alta Pressão , Comportamento Cooperativo , Limite de Detecção , Camundongos , Ratos , Reprodutibilidade dos Testes , Saxitoxina/análise , Intoxicação por Frutos do Mar/etiologia
5.
BMC Genomics ; 12: 346, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21729317

RESUMO

BACKGROUND: The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. RESULTS: Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes. CONCLUSIONS: Microarray analysis provided transcriptomic evidence for N- but not P-limitation in K. brevis. Transcriptomic responses to the addition of either N or P suggest a concerted program leading to the reactivation of chloroplast functions. Even the earliest responding PPR protein transcripts possess a 5' SL sequence that suggests post-transcriptional control. Given the current state of knowledge of dinoflagellate gene regulation, it is currently unclear how these rapid changes in such transcript levels are achieved.


Assuntos
Dinoflagellida/genética , Perfilação da Expressão Gênica , Nitratos/farmacologia , Fosfatos/farmacologia , Animais , Dinoflagellida/crescimento & desenvolvimento , Proliferação Nociva de Algas , Nitratos/química , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatos/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
6.
J Eukaryot Microbiol ; 58(4): 373-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21569164

RESUMO

Karenia brevis is a toxic dinoflagellate responsible for red tides in the Gulf of Mexico. The molecular mechanisms controlling its cell cycle are important to bloom formation because blooms develop through vegetative cell division. This study identifies a suite of conserved S-phase genes in K. brevis-proliferating cell nuclear antigen (PCNA), ribonucleotide reductase 2, replication factor C, and replication protein A-and characterizes their expression at the mRNA and protein level over the cell cycle. In higher eukaryotes, the expression of these genes is controlled by transcription, activated at S-phase entry by the E2F transcription factor, which ensures their timely availability for DNA synthesis. In the dinoflagellate, these transcripts possess a 5'-transspliced leader sequence, which suggests they may be under post-transcriptional control as demonstrated in trypanosomes. Using quantitative polymerase chain reaction (qPCR), we confirmed that their transcript levels are unchanged over the cell cycle. However, their proteins are maximally expressed during S-phase. This suggests their cell-cycle-dependent expression may be achieved at the level of translation and/or stability. Proliferating cell nuclear antigen further undergoes an increase in size of ∼9 kDa that dominates during S-phase. This coincides with a change in its distribution, with prominent staining of chromatin-bound PCNA occurring during S-phase. We hypothesize that the change in the observed size of PCNA is due to post-translational modification. Together, these studies demonstrate post-transcriptional regulation of S-phase genes in K. brevis. Differential expression of these S-phase proteins may be useful in the development of biomarkers to assess bloom growth status in the field.


Assuntos
Proteínas de Ciclo Celular/genética , Dinoflagellida/genética , Regulação da Expressão Gênica , Genes de Protozoários , Fase S , Proteínas de Ciclo Celular/biossíntese , Dinoflagellida/citologia , Dinoflagellida/metabolismo , Fatores de Transcrição E2F/metabolismo , Citometria de Fluxo , Proliferação Nociva de Algas , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Antígeno Nuclear de Célula em Proliferação/biossíntese , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Biossíntese de Proteínas , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteína de Replicação A/biossíntese , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação C/biossíntese , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Ribonucleotídeo Redutases/biossíntese , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Transcrição Gênica
7.
Nature ; 435(7043): 755-6, 2005 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-15944690

RESUMO

Potent marine neurotoxins known as brevetoxins are produced by the 'red tide' dinoflagellate Karenia brevis. They kill large numbers of fish and cause illness in humans who ingest toxic filter-feeding shellfish or inhale toxic aerosols. The toxins are also suspected of having been involved in events in which many manatees and dolphins died, but this has usually not been verified owing to limited confirmation of toxin exposure, unexplained intoxication mechanisms and complicating pathologies. Here we show that fish and seagrass can accumulate high concentrations of brevetoxins and that these have acted as toxin vectors during recent deaths of dolphins and manatees, respectively. Our results challenge claims that the deleterious effects of a brevetoxin on fish (ichthyotoxicity) preclude its accumulation in live fish, and they reveal a new vector mechanism for brevetoxin spread through food webs that poses a threat to upper trophic levels.


Assuntos
Dinoflagellida/química , Cadeia Alimentar , Mamíferos/metabolismo , Biologia Marinha , Toxinas Marinhas/análise , Oxocinas/análise , Animais , Golfinhos/metabolismo , Peixes/metabolismo , Conteúdo Gastrointestinal/química , Humanos , Trichechus/metabolismo
9.
BMC Neurosci ; 11: 107, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20796285

RESUMO

BACKGROUND: Ciguatoxins (CTXs) are polyether marine neurotoxins and potent activators of voltage-gated sodium channels. This toxin is carried by multiple reef-fish species and human consumption of ciguatoxins can result in an explosive gastrointestinal/neurologic illness. This study characterizes the global transcriptional response in mouse brain to a symptomatic dose of the highly toxic Pacific ciguatoxin P-CTX-1 and additionally compares this data to transcriptional profiles from liver and whole blood examined previously. Adult male C57/BL6 mice were injected with 0.26 ng/g P-CTX-1 while controls received only vehicle. Animals were sacrificed at 1, 4 and 24 hrs and transcriptional profiling was performed on brain RNA with Agilent whole genome microarrays. RT-PCR was used to independently validate gene expression and the web tool DAVID was used to analyze gene ontology (GO) and molecular pathway enrichment of the gene expression data. RESULTS: A pronounced 4°C hypothermic response was recorded in these mice, reaching a minimum at 1 hr and lasting for 8 hrs post toxin exposure. Ratio expression data were filtered by intensity, fold change and p-value, with the resulting data used for time course analysis, K-means clustering, ontology classification and KEGG pathway enrichment. Top GO hits for this gene set included acute phase response and mono-oxygenase activity. Molecular pathway analysis showed enrichment for complement/coagulation cascades and metabolism of xenobiotics. Many immediate early genes such as Fos, Jun and Early Growth Response isoforms were down-regulated although others associated with stress such as glucocorticoid responsive genes were up-regulated. Real time PCR confirmation was performed on 22 differentially expressed genes with a correlation of 0.9 (Spearman's Rho, p < 0.0001) with microarray results. CONCLUSIONS: Many of the genes differentially expressed in this study, in parallel with the hypothermia, figure prominently in protection against neuroinflammation. Pathologic activity of the complement/coagulation cascade has been shown in patients suffering from a chronic form of ciguatera poisoning and is of particular interest in this model. Anti-inflammatory processes were at work not only in the brain but were also seen in whole blood and liver of these animals, creating a systemic anti-inflammatory environment to protect against the initial cellular damage caused by the toxin.


Assuntos
Anti-Inflamatórios , Química Encefálica/efeitos dos fármacos , Química Encefálica/genética , Ciguatoxinas/farmacologia , Fármacos Neuroprotetores , Animais , Sangue/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Perfilação da Expressão Gênica , Genes Precoces/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Canais de Sódio/efeitos dos fármacos
10.
PLoS One ; 15(4): e0231400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294110

RESUMO

Marine dinoflagellates produce a diversity of polyketide toxins that are accumulated in marine food webs and are responsible for a variety of seafood poisonings. Reef-associated dinoflagellates of the genus Gambierdiscus produce toxins responsible for ciguatera poisoning (CP), which causes over 50,000 cases of illness annually worldwide. The biosynthetic machinery for dinoflagellate polyketides remains poorly understood. Recent transcriptomic and genomic sequencing projects have revealed the presence of Type I modular polyketide synthases in dinoflagellates, as well as a plethora of single domain transcripts with Type I sequence homology. The current transcriptome analysis compares polyketide synthase (PKS) gene transcripts expressed in two species of Gambierdiscus from French Polynesia: a highly toxic ciguatoxin producer, G. polynesiensis, versus a non-ciguatoxic species G. pacificus, each assembled from approximately 180 million Illumina 125 nt reads using Trinity, and compares their PKS content with previously published data from other Gambierdiscus species and more distantly related dinoflagellates. Both modular and single-domain PKS transcripts were present. Single domain ß-ketoacyl synthase (KS) transcripts were highly amplified in both species (98 in G. polynesiensis, 99 in G. pacificus), with smaller numbers of standalone acyl transferase (AT), ketoacyl reductase (KR), dehydratase (DH), enoyl reductase (ER), and thioesterase (TE) domains. G. polynesiensis expressed both a larger number of multidomain PKSs, and larger numbers of modules per transcript, than the non-ciguatoxic G. pacificus. The largest PKS transcript in G. polynesiensis encoded a 10,516 aa, 7 module protein, predicted to synthesize part of the polyether backbone. Transcripts and gene models representing portions of this PKS are present in other species, suggesting that its function may be performed in those species by multiple interacting proteins. This study contributes to the building consensus that dinoflagellates utilize a combination of Type I modular and single domain PKS proteins, in an as yet undefined manner, to synthesize polyketides.


Assuntos
Dinoflagellida/enzimologia , Policetídeo Sintases/genética , Transcriptoma , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Ciguatoxinas/metabolismo , Dinoflagellida/classificação , Dinoflagellida/isolamento & purificação , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Filogenia , Policetídeo Sintases/metabolismo , Polinésia , RNA/química , RNA/isolamento & purificação , RNA/metabolismo
11.
J Chem Ecol ; 35(7): 851-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19590925

RESUMO

Gulf of Mexico blooms of the dinoflagellate Karenia brevis produce neurotoxic cyclic polyethers called brevetoxins. During and after a red tide bloom in southwestern Florida, K. brevis cells lyse and release brevetoxins, which then sink to the benthos and coat the surfaces of seagrasses and their epiphytes. We tested the possibility that these brevetoxin-laden foods alter the feeding behavior and fitness of a common benthic herbivore within Floridean seagrass beds, the amphipod Ampithoe longimana. We demonstrated that coating foods with K. brevis extracts that contain brevetoxins at post-bloom concentrations (1 microg g(-1) drymass) does not alter the feeding rates of Florida nor North Carolina populations of A. longimana, although a slight deterrent effect was found at eight and ten-fold greater concentrations. During a series of feeding choice assays, A. longimana tended not to be deterred by foods coated with K. brevis extracts nor with the purified brevetoxins PbTx-2 and PbTx-3. Florida juveniles isolated with either extract-coated or control foods for 10 days did not differ in survivorship nor growth. A similar lack of feeding response to brevetoxin-laden foods also was exhibited by two other generalist herbivores of the southeastern United States, the amphipod A. valida and the urchin Arbacia punctulata. Given that benthic mesograzers constitute a significant portion of the diet for the juvenile stage of many nearshore fishes, we hypothesize that the ability of some mesograzers to feed on and retain brevetoxins in their bodies indicates that mesograzers may represent an important route of vertical transmission of brevetoxins through higher trophic levels within Gulf of Mexico estuaries.


Assuntos
Dinoflagellida/química , Toxinas Marinhas/farmacologia , Oxocinas/farmacologia , Anfípodes/efeitos dos fármacos , Animais , Arbacia/efeitos dos fármacos , Dinoflagellida/metabolismo , Monitoramento Ambiental , Comportamento Alimentar , Toxinas Marinhas/isolamento & purificação , Toxinas Marinhas/toxicidade , Oxocinas/isolamento & purificação , Oxocinas/toxicidade
12.
Environ Toxicol ; 24(4): 362-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18825730

RESUMO

Avian vacuolar myelinopathy (AVM) is a neurological disease affecting bald eagles (Haliaeetus leucocephalus), American coots (Fulica americana), waterfowl, and other birds in the southeastern United States. The cause of the disease is unknown, but is thought to be a naturally produced toxin. AVM is associated with aquatic macrophytes, most frequently hydrilla (Hydrilla verticillata), and researchers have linked the disease to an epiphytic cyanobacterial species associated with the macrophytes. The goal of this study was to develop an extraction protocol for separating the putative toxin from a hydrilla-cyanobacterial matrix. Hydrilla samples were collected from an AVM-affected reservoir (J. Strom Thurmond Lake, SC) and confirmed to contain the etiologic agent by mallard (Anas platyrhynchos) bioassay. These samples were then extracted using a solvent series of increasing polarity: hexanes, acetone, and methanol. Control hydrilla samples from a reference reservoir with no history of AVM (Lake Marion, SC) were extracted in parallel. Resulting extracts were administered to mallards by oral gavage. Our findings indicate that the methanol extracts of hydrilla collected from the AVM-affected site induced the disease in laboratory mallards. This study provides the first data documenting for an "extractable" AVM-inducing agent.


Assuntos
Doenças das Aves/induzido quimicamente , Hydrocharitaceae/toxicidade , Síndromes Neurotóxicas/veterinária , Neurotoxinas/isolamento & purificação , Extração em Fase Sólida/métodos , Animais , Doenças das Aves/patologia , Patos , Monitoramento Ambiental , Bainha de Mielina/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Neurotoxinas/toxicidade , Lobo Óptico de Animais não Mamíferos/patologia , Extratos Vegetais/toxicidade , Solventes , Testes de Toxicidade , Vacúolos/efeitos dos fármacos
13.
J AOAC Int ; 92(6): 1705-13, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20166588

RESUMO

A single-laboratory validation (SLV) study was conducted for the microplate receptor binding assay (RBA) for paralytic shellfish poisoning (PSP) toxins in shellfish. The basis of the assay is the competition between [3H]saxitoxin (STX) and STX in a standard or sample for binding to the voltage dependent sodium channel. A calibration curve is generated by the addition of 0.01-1000 nM STX, which results in the concentration dependent decrease in [3H]STX-receptor complexes formed and serves to quantify STX in unknown samples. This study established the LOQ, linearity, recovery, accuracy, and precision of the assay for determining PSP toxicity in shellfish extracts, as performed by a single analyst on multiple days. The standard curve obtained on 5 independent days resulted in a half-maximal inhibition (IC50) of 2.3 nM STX +/- 0.3 (RSD = 10.8%) with a slope of 0.96 +/- 0.06 (RSD = 6.3%) and a dynamic range of 1.2-10.0 nM. The LOQ was 5.3 microg STX equivalents/100 g shellfish. Linearity, established by quantification of three levels of purified STX (1.5, 3, and 6 nM), yielded an r2 of 0.97. Recovery from mussels spiked with three levels (40, 80, and 120 microg STX/100 g) averaged 121%. Repeatability (RSD(r)), determined on six naturally contaminated shellfish samples on 5 independent days, was 17.7%. A method comparison with the AOAC mouse bioassay yielded r2 = 0.98 (slope = 1.29) in the SLV study. The effects of the extraction method on RBA-based toxicity values were assessed on shellfish extracted for PSP toxins using the AOAC mouse bioassay method (0.1 M HCI) compared to that for the precolumn oxidation HPLC method (0.1% acetic acid). The two extraction methods showed linear correlation (r2 = 0.99), with the HCl extraction method yielding slightly higher toxicity values (slope = 1.23). A similar relationship was observed between HPLC quantification of the HCI- and acetic acid-extracted samples (r2 = 0.98, slope 1.19). The RBA also had excellent linear correlation with HPLC analyses (r2 = 0.98 for HCl, r2 = 0.99 for acetic acid), but gave somewhat higher values than HPLC using either extraction method (slope = 1.39 for HCl extracts, slope = 1.32 for acetic acid). Overall, the excellent linear correlations with the both mouse bioassay and HPLC method and sufficient interassay repeatability suggest that the RBA can be effective as a high throughput screen for estimating PSP toxicity in shellfish.


Assuntos
Toxinas Marinhas/análise , Saxitoxina/análise , Frutos do Mar/análise , Ácido Acético/química , Animais , Bioensaio , Bivalves , Encéfalo/metabolismo , Calibragem , Cromatografia Líquida de Alta Pressão , Interpretação Estatística de Dados , Indicadores e Reagentes , Camundongos , Paralisia/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Reprodutibilidade dos Testes , Soluções
14.
Genomics ; 91(3): 289-300, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18191373

RESUMO

Azaspiracid-1 (AZA-1) is a marine biotoxin reported to accumulate in shellfish from several countries, including eastern Canada, Morocco, and much of western Europe, and is frequently associated with severe gastrointestinal human intoxication. As the mechanism of action of AZA-1 is currently unknown, human DNA microarrays and qPCR were used to profile gene expression patterns in human T lymphocyte cells following AZA-1 exposure. Some of the early (1 h) responding genes consisted of transcription factors, membrane proteins, receptors, and inflammatory genes. Four- and 24-h responding genes were dominated by genes involved in de novo lipid biosynthesis of which 17 of 18 involved in cholesterol biosynthesis were significantly up regulated. The up regulation of synthesis genes was likely in response to the ca. 50% reduction in cellular cholesterol, which correlated with up regulated protein expression levels of the low-density lipoprotein receptor. These data collectively detail the inhibition of de novo cholesterol synthesis, which is the likely cause of cytotoxicity and potentially a target pathway of the toxin.


Assuntos
Colesterol/biossíntese , Expressão Gênica/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Compostos de Espiro/toxicidade , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Animais , Mapeamento Cromossômico , Ácidos Graxos/biossíntese , Doenças Transmitidas por Alimentos/genética , Doenças Transmitidas por Alimentos/metabolismo , Perfilação da Expressão Gênica , Glucagon/metabolismo , Humanos , Insulina/metabolismo , Células Jurkat , Família Multigênica/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de LDL/metabolismo , Frutos do Mar/toxicidade , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/metabolismo
15.
Sci Rep ; 9(1): 1204, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718591

RESUMO

Symbiodiniaceae dinoflagellates possess smaller nuclear genomes than other dinoflagellates and produce structurally specialized, biologically active, secondary metabolites. Till date, little is known about the evolution of secondary metabolism in dinoflagellates as comparative genomic approaches have been hampered by their large genome sizes. Here, we overcome this challenge by combining genomic and metabolomics approaches to investigate how chemical diversity arises in three decoded Symbiodiniaceae genomes (clades A3, B1 and C). Our analyses identify extensive diversification of polyketide synthase and non-ribosomal peptide synthetase genes from two newly decoded genomes of Symbiodinium tridacnidorum (A3) and Cladocopium sp. (C). Phylogenetic analyses indicate that almost all the gene families are derived from lineage-specific gene duplications in all three clades, suggesting divergence for environmental adaptation. Few metabolic pathways are conserved among the three clades and we detect metabolic similarity only in the recently diverged clades, B1 and C. We establish that secondary metabolism protein architecture guides substrate specificity and that gene duplication and domain shuffling have resulted in diversification of secondary metabolism genes.


Assuntos
Dinoflagellida/genética , Metabolismo Secundário/genética , Animais , Antozoários/genética , Evolução Biológica , Evolução Molecular , Genoma , Peptídeo Sintases/metabolismo , Filogenia , Policetídeo Sintases/genética , Policetídeos/metabolismo , Simbiose/genética
16.
Protist ; 159(3): 471-82, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18467171

RESUMO

Karenia brevis is the Florida red tide dinoflagellate responsible for detrimental effects on human and environmental health through the production of brevetoxins. Brevetoxins are thought to be synthesized by a polyketide synthase (PKS) complex, but the gene cluster for this PKS has yet to be identified. Here, eight PKS transcripts were identified in K. brevis by high throughput cDNA library screening. Full length sequences were obtained through 3' and 5' RACE, which demonstrated the presence of polyadenylation, 3'-UTRs, and an identical dinoflagellate-specific spliced leader sequence at the 5' end of PKS transcripts. Six transcripts encoded for individual ketosynthase (KS) domains, one ketoreductase (KR), and one transcript encoded both acyl carrier protein (ACP) and KS domains. Transcript lengths ranged from 1875 to 3397 nucleotides, based on sequence analysis, and were confirmed by northern blotting. Baysian phylogenetic analysis of the K. brevis KS domains placed them well within the protist type I PKS clade. Thus although most similar to type I modular PKSs, the presence of individual catalytic domains on separate transcripts suggests a protein structure more similar to type II PKSs, in which each catalytic domain resides on an individual protein. These results identify an unprecedented PKS structure in a toxic dinoflagellate.


Assuntos
Dinoflagellida/enzimologia , Policetídeo Sintases/química , Proteínas de Protozoários/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência de Bases , Domínio Catalítico , Dinoflagellida/química , Dinoflagellida/classificação , Dinoflagellida/genética , Evolução Molecular , Humanos , Toxinas Marinhas/biossíntese , Camundongos , Dados de Sequência Molecular , Oxocinas , Filogenia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Ratos , Alinhamento de Sequência
17.
Mar Genomics ; 38: 45-58, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28843847

RESUMO

Common bottlenose dolphins serve as sentinels for the health of their coastal environments as they are susceptible to health impacts from anthropogenic inputs through both direct exposure and food web magnification. Remote biopsy samples have been widely used to reveal contaminant burdens in free-ranging bottlenose dolphins, but do not address the health consequences of this exposure. To gain insight into whether remote biopsies can also identify health impacts associated with contaminant burdens, we employed RNA sequencing (RNA-seq) to interrogate the transcriptomes of remote skin biopsies from 116 bottlenose dolphins from the northern Gulf of Mexico and southeastern U.S. Atlantic coasts. Gene expression was analyzed using principal component analysis, differential expression testing, and gene co-expression networks, and the results correlated to season, location, and contaminant burden. Season had a significant impact, with over 60% of genes differentially expressed between spring/summer and winter months. Geographic location exhibited lesser effects on the transcriptome, with 23.5% of genes differentially expressed between the northern Gulf of Mexico and the southeastern U.S. Atlantic locations. Despite a large overlap between the seasonal and geographical gene sets, the pathways altered in the observed gene expression profiles were somewhat distinct. Co-regulated gene modules and differential expression analysis both identified epidermal development and cellular architecture pathways to be expressed at lower levels in animals from the northern Gulf of Mexico. Although contaminant burdens measured were not significantly different between regions, some correlation with contaminant loads in individuals was observed among co-expressed gene modules, but these did not include classical detoxification pathways. Instead, this study identified other, possibly downstream pathways, including those involved in cellular architecture, immune response, and oxidative stress, that may prove to be contaminant responsive markers in bottlenose dolphin skin.


Assuntos
Golfinho Nariz-de-Garrafa/genética , Exposição Ambiental , Monitoramento Ambiental , Pele/metabolismo , Transcriptoma , Poluentes Químicos da Água/efeitos adversos , Animais , Feminino , Golfo do México , Masculino , Análise de Sequência de RNA , South Carolina
18.
Neurotoxicology ; 28(6): 1099-109, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17868886

RESUMO

Ciguatoxins (CTX) are a suite of cyclic polyether toxins produced by the marine dinoflagellate Gambierdiscus sp., are potent activators of voltage-gated sodium channels and a leading cause of human poisoning from food fish. This report characterizes the genomic and proteomic response in whole blood of adult male mice exposed i.p. to 264 ng/kg of the Pacific congener of CTX (P-CTX-1) at 1, 4 and 24h. Whole genome microarray expression data were filtered by tightness of fit between replicates, fold change (1.8) and p-value (10(-5)), resulting in 183 annotated genes used for trending analysis, K-means clustering and ontology classification. Genes involved with cytokine signaling, proteasome complex and ribosomal function were dominant. qPCR performed on 19 genes of interest had a correlation of 0.95 to array results by Pearson's correlation coefficient. Serum protein analysis showed small but significant changes in 6 of 60 proteins assayed: Ccl2, Ccl12, CD40, IL-10, leptin and M-CSF. In large part, the gene expression was consistent with a Th2 immune response with interesting similarities to expression seen in asthmatic models.


Assuntos
Proteínas Sanguíneas/metabolismo , Ciguatera/sangue , Perfilação da Expressão Gênica , Proteômica , RNA/sangue , Transcrição Gênica/efeitos dos fármacos , Animais , Formação de Anticorpos/genética , Ciguatera/genética , Ciguatera/imunologia , Ciguatoxinas , Análise por Conglomerados , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Imunoensaio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica/métodos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th2/imunologia , Fatores de Tempo
19.
Mar Genomics ; 35: 77-92, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28802692

RESUMO

Assessing the health of marine mammal sentinel species is crucial to understanding the impacts of environmental perturbations on marine ecosystems and human health. In Arctic regions, beluga whales, Delphinapterus leucas, are upper level predators that may serve as a sentinel species, potentially forecasting impacts on human health. While gene expression profiling from blood transcriptomes has widely been used to assess health status and environmental exposures in human and veterinary medicine, its use in wildlife has been limited due to the lack of available genomes and baseline data. To this end we constructed the first beluga whale blood transcriptome de novo from samples collected during annual health assessments of the healthy Bristol Bay, AK stock during 2012-2014 to establish baseline information on the content and variation of the beluga whale blood transcriptome. The Trinity transcriptome assembly from beluga was comprised of 91,325 transcripts that represented a wide array of cellular functions and processes and was extremely similar in content to the blood transcriptome of another cetacean, the bottlenose dolphin. Expression of hemoglobin transcripts was much lower in beluga (25.6% of TPM, transcripts per million) than has been observed in many other mammals. A T12A amino acid substitution in the HBB sequence of beluga whales, but not bottlenose dolphins, was identified and may play a role in low temperature adaptation. The beluga blood transcriptome was extremely stable between sex and year, with no apparent clustering of samples by principle components analysis and <4% of genes differentially expressed (EBseq, FDR<0.05). While the impacts of season, sexual maturity, disease, and geography on the beluga blood transcriptome must be established, the presence of transcripts involved in stress, detoxification, and immune functions indicate that blood gene expression analyses may provide information on health status and exposure. This study provides a wealth of transcriptomic data on beluga whales and provides a sizeable pool of preliminary data for comparison with other studies in beluga whale.


Assuntos
Beluga/genética , Transcriptoma , Alaska , Animais , Beluga/sangue , Análise Química do Sangue/veterinária , Feminino , Perfilação da Expressão Gênica , Masculino , Análise de Sequência de RNA
20.
Biol Proced Online ; 8: 175-93, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17242735

RESUMO

Quantitative real-time PCR (qPCR) is a commonly used validation tool for confirming gene expression results obtained from microarray analysis; however, microarray and qPCR data often result in disagreement. The current study assesses factors contributing to the correlation between these methods in five separate experiments employing two-color 60-mer oligonucleotide microarrays and qPCR using SYBR green. Overall, significant correlation was observed between microarray and qPCR results (rho=0.708, p<0.0001, n=277) using these platforms. The contribution of factors including up- vs. down-regulation, spot intensity, rho-value, fold-change, cycle threshold (C(t)), array averaging, tissue type, and tissue preparation was assessed. Filtering of microarray data for measures of quality (fold-change and rho-value) proves to be the most critical factor, with significant correlations of rho>0.80 consistently observed when quality scores are applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA