Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(47): 23850-23858, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685622

RESUMO

Increasing maize grain yield has been a major focus of both plant breeding and genetic engineering to meet the global demand for food, feed, and industrial uses. We report that increasing and extending expression of a maize MADS-box transcription factor gene, zmm28, under the control of a moderate-constitutive maize promoter, results in maize plants with increased plant growth, photosynthesis capacity, and nitrogen utilization. Molecular and biochemical characterization of zmm28 transgenic plants demonstrated that their enhanced agronomic traits are associated with elevated plant carbon assimilation, nitrogen utilization, and plant growth. Overall, these positive attributes are associated with a significant increase in grain yield relative to wild-type controls that is consistent across years, environments, and elite germplasm backgrounds.


Assuntos
Produtos Agrícolas/genética , Grão Comestível , Genes de Plantas , Zea mays/genética , Sequência de Aminoácidos , Produtos Agrícolas/enzimologia , Glutamato-Amônia Ligase/metabolismo , Nitrato Redutase/metabolismo , Nitrogênio/metabolismo , Fotossíntese/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Transcriptoma , Zea mays/enzimologia
2.
Entropy (Basel) ; 22(6)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-33286399

RESUMO

"A Mathematical Theory of Communication" was published in 1948 by Claude Shannon to address the problems in the field of data compression and communication over (noisy) communication channels. Since then, the concepts and ideas developed in Shannon's work have formed the basis of information theory, a cornerstone of statistical learning and inference, and has been playing a key role in disciplines such as physics and thermodynamics, probability and statistics, computational sciences and biological sciences. In this article we review the basic information theory based concepts and describe their key applications in multiple major areas of research in computational biology-gene expression and transcriptomics, alignment-free sequence comparison, sequencing and error correction, genome-wide disease-gene association mapping, metabolic networks and metabolomics, and protein sequence, structure and interaction analysis.

3.
Plant Biotechnol J ; 17(12): 2272-2285, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31033139

RESUMO

Functional stay-green is a valuable trait that extends the photosynthetic period, increases source capacity and biomass and ultimately translates to higher grain yield. Selection for higher yields has increased stay-green in modern maize hybrids. Here, we report a novel QTL controlling functional stay-green that was discovered in a mapping population derived from the Illinois High Protein 1 (IHP1) and Illinois Low Protein 1 (ILP1) lines, which show very different rates of leaf senescence. This QTL was mapped to a single gene containing a NAC-domain transcription factor that we named nac7. Transgenic maize lines where nac7 was down-regulated by RNAi showed delayed senescence and increased both biomass and nitrogen accumulation in vegetative tissues, demonstrating NAC7 functions as a negative regulator of the stay-green trait. More importantly, crosses between nac7 RNAi parents and two different elite inbred testers produced hybrids with prolonged stay-green and increased grain yield by an average 0.29 megagram/hectare (4.6 bushel/acre), in 2 years of multi-environment field trials. Subsequent RNAseq experiments, one employing nac7 RNAi leaves and the other using leaf protoplasts overexpressing Nac7, revealed an important role for NAC7 in regulating genes in photosynthesis, chlorophyll degradation and protein turnover pathways that each contribute to the functional stay-green phenotype. We further determined the putative target of NAC7 and provided a logical extension for the role of NAC7 in regulating resource allocation from vegetative source to reproductive sink tissues. Collectively, our findings make a compelling case for NAC7 as a target for improving functional stay-green and yields in maize and other crops.


Assuntos
Fotossíntese , Locos de Características Quantitativas , Fatores de Transcrição/genética , Zea mays/genética , Biomassa , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Nitrogênio , Folhas de Planta , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Zea mays/crescimento & desenvolvimento
4.
Nucleic Acids Res ; 40(Database issue): D1194-201, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22084198

RESUMO

PLEXdb (http://www.plexdb.org), in partnership with community databases, supports comparisons of gene expression across multiple plant and pathogen species, promoting individuals and/or consortia to upload genome-scale data sets to contrast them to previously archived data. These analyses facilitate the interpretation of structure, function and regulation of genes in economically important plants. A list of Gene Atlas experiments highlights data sets that give responses across different developmental stages, conditions and tissues. Tools at PLEXdb allow users to perform complex analyses quickly and easily. The Model Genome Interrogator (MGI) tool supports mapping gene lists onto corresponding genes from model plant organisms, including rice and Arabidopsis. MGI predicts homologies, displays gene structures and supporting information for annotated genes and full-length cDNAs. The gene list-processing wizard guides users through PLEXdb functions for creating, analyzing, annotating and managing gene lists. Users can upload their own lists or create them from the output of PLEXdb tools, and then apply diverse higher level analyses, such as ANOVA and clustering. PLEXdb also provides methods for users to track how gene expression changes across many different experiments using the Gene OscilloScope. This tool can identify interesting expression patterns, such as up-regulation under diverse conditions or checking any gene's suitability as a steady-state control.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Genes de Plantas , Genoma de Planta , Anotação de Sequência Molecular , Software , Transcriptoma
5.
Bioinformatics ; 28(7): 947-54, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22308149

RESUMO

MOTIVATION: Analysis of omics experiments generates lists of entities (genes, metabolites, etc.) selected based on specific behavior, such as changes in response to stress or other signals. Functional interpretation of these lists often uses category enrichment tests using functional annotations like Gene Ontology terms and pathway membership. This approach does not consider the connected structure of biochemical pathways or the causal directionality of events. RESULTS: The Omics Response Group (ORG) method, described in this work, interprets omics lists in the context of metabolic pathway and regulatory networks using a statistical model for flow within the networks. Statistical results for all response groups are visualized in a novel Pathway Flow plot. The statistical tests are based on the Erlang distribution model under the assumption of independent and identically Exponential-distributed random walk flows through pathways. As a proof of concept, we applied our method to an Escherichia coli transcriptomics dataset where we confirmed common knowledge of the E.coli transcriptional response to Lipid A deprivation. The main response is related to osmotic stress, and we were also able to detect novel responses that are supported by the literature. We also applied our method to an Arabidopsis thaliana expression dataset from an abscisic acid study. In both cases, conventional pathway enrichment tests detected nothing, while our approach discovered biological processes beyond the original studies. AVAILABILITY: We created a prototype for an interactive ORG web tool at http://ecoserver.vrac.iastate.edu/pathwayflow (source code is available from https://subversion.vrac.iastate.edu/Subversion/jlv/public/jlv/pathwayflow). The prototype is described along with additional figures and tables in Supplementary Material. CONTACT: julied@iastate.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Redes e Vias Metabólicas , Modelos Estatísticos , Arabidopsis/genética , Arabidopsis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Software
6.
Bioinformatics ; 27(11): 1578-80, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21511714

RESUMO

SUMMARY: CytoModeler is an open-source Java application based on the Cytoscape platform. It integrates large-scale network analysis and quantitative modeling by combining omics analysis on the Cytoscape platform, access to deterministic and stochastic simulators, and static and dynamic network context visualizations of simulation results. AVAILABILITY: Implemented in Java, CytoModeler runs with Cytoscape 2.6 and 2.7. Binaries, documentation and video walkthroughs are freely available at http://vrac.iastate.edu/~jlv/cytomodeler/.


Assuntos
Modelos Biológicos , Software , Simulação por Computador , Biologia de Sistemas/métodos
7.
Bioinformatics ; 26(18): 2345-6, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20647521

RESUMO

UNLABELLED: CellDesigner provides a user-friendly interface for graphical biochemical pathway description. Many pathway databases are not directly exportable to CellDesigner models. PathwayAccess is an extensible suite of CellDesigner plugins, which connect CellDesigner directly to pathway databases using respective Java application programming interfaces. The process is streamlined for creating new PathwayAccess plugins for specific pathway databases. Three PathwayAccess plugins, MetNetAccess, BioCycAccess and ReactomeAccess, directly connect CellDesigner to the pathway databases MetNetDB, BioCyc and Reactome. PathwayAccess plugins enable CellDesigner users to expose pathway data to analytical CellDesigner functions, curate their pathway databases and visually integrate pathway data from different databases using standard Systems Biology Markup Language and Systems Biology Graphical Notation. AVAILABILITY: Implemented in Java, PathwayAccess plugins run with CellDesigner version 4.0.1 and were tested on Ubuntu Linux, Windows XP and 7, and MacOSX. Source code, binaries, documentation and video walkthroughs are freely available at http://vrac.iastate.edu/~jlv.


Assuntos
Redes e Vias Metabólicas , Software , Bases de Dados Factuais
8.
BMC Genomics ; 11: 694, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21138572

RESUMO

BACKGROUND: The reptiles, characterized by both diversity and unique evolutionary adaptations, provide a comprehensive system for comparative studies of metabolism, physiology, and development. However, molecular resources for ectothermic reptiles are severely limited, hampering our ability to study the genetic basis for many evolutionarily important traits such as metabolic plasticity, extreme longevity, limblessness, venom, and freeze tolerance. Here we use massively parallel sequencing (454 GS-FLX Titanium) to generate a transcriptome of the western terrestrial garter snake (Thamnophis elegans) with two goals in mind. First, we develop a molecular resource for an ectothermic reptile; and second, we use these sex-specific transcriptomes to identify differences in the presence of expressed transcripts and potential genes of evolutionary interest. RESULTS: Using sex-specific pools of RNA (one pool for females, one pool for males) representing 7 tissue types and 35 diverse individuals, we produced 1.24 million sequence reads, which averaged 366 bp in length after cleaning. Assembly of the cleaned reads from both sexes with NEWBLER and MIRA resulted in 96,379 contigs containing 87% of the cleaned reads. Over 34% of these contigs and 13% of the singletons were annotated based on homology to previously identified proteins. From these homology assignments, additional clustering, and ORF predictions, we estimate that this transcriptome contains ~13,000 unique genes that were previously identified in other species and over 66,000 transcripts from unidentified protein-coding genes. Furthermore, we use a graph-clustering method to identify contigs linked by NEWBLER-split reads that represent divergent alleles, gene duplications, and alternatively spliced transcripts. Beyond gene identification, we identified 95,295 SNPs and 31,651 INDELs. From these sex-specific transcriptomes, we identified 190 genes that were only present in the mRNA sequenced from one of the sexes (84 female-specific, 106 male-specific), and many highly variable genes of evolutionary interest. CONCLUSIONS: This is the first large-scale, multi-organ transcriptome for an ectothermic reptile. This resource provides the most comprehensive set of EST sequences available for an individual ectothermic reptile species, increasing the number of snake ESTs 50-fold. We have identified genes that appear to be under evolutionary selection and those that are sex-specific. This resource will assist studies on gene expression and comparative genomics, and will facilitate the study of evolutionarily important traits at the molecular level.


Assuntos
Colubridae/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Caracteres Sexuais , Animais , Sequência de Bases , Análise por Conglomerados , Feminino , Regulação da Expressão Gênica , Genoma/genética , Lagartos/genética , Complexo Principal de Histocompatibilidade/genética , Masculino , Anotação de Sequência Molecular , Mutação/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Titânio
9.
BMC Bioinformatics ; 10: 346, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19845953

RESUMO

BACKGROUND: Biological networks characterize the interactions of biomolecules at a systems-level. One important property of biological networks is the modular structure, in which nodes are densely connected with each other, but between which there are only sparse connections. In this report, we attempted to find the relationship between the network topology and formation of modular structure by comparing gene co-expression networks with random networks. The organization of gene functional modules was also investigated. RESULTS: We constructed a genome-wide Arabidopsis gene co-expression network (AGCN) by using 1094 microarrays. We then analyzed the topological properties of AGCN and partitioned the network into modules by using an efficient graph clustering algorithm. In the AGCN, 382 hub genes formed a clique, and they were densely connected only to a small subset of the network. At the module level, the network clustering results provide a systems-level understanding of the gene modules that coordinate multiple biological processes to carry out specific biological functions. For instance, the photosynthesis module in AGCN involves a very large number (> 1000) of genes which participate in various biological processes including photosynthesis, electron transport, pigment metabolism, chloroplast organization and biogenesis, cofactor metabolism, protein biosynthesis, and vitamin metabolism. The cell cycle module orchestrated the coordinated expression of hundreds of genes involved in cell cycle, DNA metabolism, and cytoskeleton organization and biogenesis. We also compared the AGCN constructed in this study with a graphical Gaussian model (GGM) based Arabidopsis gene network. The photosynthesis, protein biosynthesis, and cell cycle modules identified from the GGM network had much smaller module sizes compared with the modules found in the AGCN, respectively. CONCLUSION: This study reveals new insight into the topological properties of biological networks. The preferential hub-hub connections might be necessary for the formation of modular structure in gene co-expression networks. The study also reveals new insight into the organization of gene functional modules.


Assuntos
Arabidopsis/genética , Biologia Computacional/métodos , Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos
10.
J Med Entomol ; 45(4): 775-84, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18714883

RESUMO

Mosquito population dynamics have been monitored on an annual basis in the state of Iowa since 1969. The primary goal of this project was to integrate light trap data from these efforts into a centralized back-end database and interactive website that is available through the internet at http://iowa-mosquito.ent.iastate.edu. For comparative purposes, all data were categorized according to the week of the year and normalized according to the number of traps running. Users can readily view current, weekly mosquito abundance compared with data from previous years. Additional interactive capabilities facilitate analyses of the data based on mosquito species, distribution, or a time frame of interest. All data can be viewed in graphical and tabular format and can be downloaded to a comma separated value (CSV) file for import into a spreadsheet or more specialized statistical software package. Having this long-term dataset in a centralized database/website is useful for informing mosquito and mosquito-borne disease control and for exploring the ecology of the species represented therein. In addition to mosquito population dynamics, this database is available as a standardized platform that could be modified and applied to a multitude of projects that involve repeated collection of observational data. The development and implementation of this tool provides capacity for the user to mine data from standard spreadsheets into a relational database and then view and query the data in an interactive website.


Assuntos
Culicidae , Dinâmica Populacional , Animais , Biologia Computacional , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Bases de Dados Genéticas , Ecossistema , Sistemas de Informação , Controle da População
11.
PLoS One ; 13(9): e0203160, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30183751

RESUMO

RNA interference (RNAi)-based technology shows great potential for use in agriculture, particularly for management of costly insect pests. In the decade since the insecticidal effects of environmentally-introduced RNA were first reported, this treatment has been applied to several types of insect pests. Through the course of those efforts, it has become apparent that different insects exhibit a range of sensitivity to environmentally-introduced RNAs. The variation in responses across insect is not well-understood, with differences in the underlying RNAi mechanisms being one explanation. This study evaluates eight proteins among three agricultural pests whose responses to environmental RNAi are known to differ: western corn rootworm (Diabrotica virgifera virgifera), fall armyworm (Spodoptera frugiperda), and southern green stink bug (Nezara viridula). These proteins have been identified in various organisms as centrally involved in facilitating the microRNA- and small interfering-RNA-mediated interference responses. Various bioinformatics tools, as well as gene expression profiling, were used to identify and evaluate putative homologues for characteristics that may contribute to the differing responses of these insects, such as the absence of critical functional domains within expressed sequences, the absence of entire gene sequences, or unusually low or undetectable expression of critical genes. Though many similarities were observed, the number of isoforms and expression levels of double-stranded RNA-binding and argonaute proteins varied across insect. Differences among key RNAi machinery genes of these three pests may impact the function of their RNAi pathways, and therefore, their respective responses to exogenous RNAs.


Assuntos
Besouros/metabolismo , Heterópteros/metabolismo , Proteínas de Insetos/metabolismo , Lepidópteros/metabolismo , Interferência de RNA/fisiologia , Animais , Besouros/genética , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Heterópteros/genética , Proteínas de Insetos/genética , Lepidópteros/genética , Masculino , MicroRNAs/metabolismo , Controle Biológico de Vetores , RNA Interferente Pequeno/metabolismo , Especificidade da Espécie
12.
BMC Res Notes ; 5: 213, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22554261

RESUMO

BACKGROUND: The first draft assembly and gene prediction of the grapevine genome (8X base coverage) was made available to the scientific community in 2007, and functional annotation was developed on this gene prediction. Since then additional Sanger sequences were added to the 8X sequences pool and a new version of the genomic sequence with superior base coverage (12X) was produced. RESULTS: In order to more efficiently annotate the function of the genes predicted in the new assembly, it is important to build on as much of the previous work as possible, by transferring 8X annotation of the genome to the 12X version. The 8X and 12X assemblies and gene predictions of the grapevine genome were compared to answer the question, "Can we uniquely map 8X predicted genes to 12X predicted genes?" The results show that while the assemblies and gene structure predictions are too different to make a complete mapping between them, most genes (18,725) showed a one-to-one relationship between 8X predicted genes and the last version of 12X predicted genes. In addition, reshuffled genomic sequence structures appeared. These highlight regions of the genome where the gene predictions need to be taken with caution. Based on the new grapevine gene functional annotation and in-depth functional categorization, twenty eight new molecular networks have been created for VitisNet while the existing networks were updated. CONCLUSIONS: The outcomes of this study provide a functional annotation of the 12X genes, an update of VitisNet, the system of the grapevine molecular networks, and a new functional categorization of genes. Data are available at the VitisNet website (http://www.sdstate.edu/ps/research/vitis/pathways.cfm).


Assuntos
Genes de Plantas/genética , Genoma de Planta/genética , Anotação de Sequência Molecular/métodos , Vitis/genética , Sequência de Bases , Redes Reguladoras de Genes/genética , Homologia de Sequência do Ácido Nucleico
13.
Comput Methods Programs Biomed ; 101(1): 80-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20541280

RESUMO

Statistical tests are often performed to discover which experimental variables are reacting to specific treatments. Time-series statistical models usually require the researcher to make assumptions with respect to the distribution of measured responses which may not hold. Randomization tests can be applied to data in order to generate null distributions non-parametrically. However, large numbers of randomizations are required for the precise p-values needed to control false discovery rates. When testing tens of thousands of variables (genes, chemical compounds, or otherwise), significant q-value cutoffs can be extremely small (on the order of 10(-5) to 10(-8)). This requires high-precision p-values, which in turn require large numbers of randomizations. The NVIDIA(®) Compute Unified Device Architecture(®) (CUDA(®)) platform for General Programming on the Graphics Processing Unit (GPGPU) was used to implement an application which performs high-precision randomization tests via Monte Carlo sampling for quickly screening custom test statistics for experiments with large numbers of variables, such as microarrays, Next-Generation sequencing read counts, chromatographical signals, or other abundance measurements. The software has been shown to achieve up to more than 12 fold speedup on a Graphics Processing Unit (GPU) when compared to a powerful Central Processing Unit (CPU). The main limitation is concurrent random access of shared memory on the GPU. The software is available from the authors.


Assuntos
Método de Monte Carlo , Software , Algoritmos , Gráficos por Computador , Simulação por Computador , Bases de Dados Factuais , Modelos Estatísticos
14.
PLoS One ; 4(12): e8365, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20027228

RESUMO

BACKGROUND: Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet). METHODOLOGY/PRINCIPAL FINDINGS: The sequences from the Vitis vinifera (cv. Pinot Noir PN40024) genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 "Metabolic", 15 "Genetic Information Processing", 12 "Environmental Information Processing", 3 "Cellular Processes", 21 "Transport", and 80 "Transcription Factors". The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. CONCLUSIONS/SIGNIFICANCE: VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage) and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome location can be accessed and downloaded from the VitisNet tab at http://vitis-dormancy.sdstate.org.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Software , Vitis/genética , Sequência de Bases , Transporte Biológico , Meio Ambiente , Etiquetas de Sequências Expressas , Redes e Vias Metabólicas/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA