Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 44(2): 940-53, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26673726

RESUMO

Purine nucleosides on position 9 of eukaryal and archaeal tRNAs are frequently modified in vivo by the post-transcriptional addition of a methyl group on their N1 atom. The methyltransferase Trm10 is responsible for this modification in both these domains of life. While certain Trm10 orthologues specifically methylate either guanosine or adenosine at position 9 of tRNA, others have a dual specificity. Until now structural information about this enzyme family was only available for the catalytic SPOUT domain of Trm10 proteins that show specificity toward guanosine. Here, we present the first crystal structure of a full length Trm10 orthologue specific for adenosine, revealing next to the catalytic SPOUT domain also N- and C-terminal domains. This structure hence provides crucial insights in the tRNA binding mechanism of this unique monomeric family of SPOUT methyltransferases. Moreover, structural comparison of this adenosine-specific Trm10 orthologue with guanosine-specific Trm10 orthologues suggests that the N1 methylation of adenosine relies on additional catalytic residues.


Assuntos
Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , RNA de Transferência/metabolismo , Sulfolobus acidocaldarius/enzimologia , tRNA Metiltransferases/metabolismo , Adenosina/química , Proteínas Arqueais/genética , Domínio Catalítico , Cristalografia por Raios X , Metilação , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , RNA de Transferência/química , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , tRNA Metiltransferases/química , tRNA Metiltransferases/genética
2.
RNA ; 20(8): 1257-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24951554

RESUMO

The 2'-O-methylation of the nucleoside at position 32 of tRNA is found in organisms belonging to the three domains of life. Unrelated enzymes catalyzing this modification in Bacteria (TrmJ) and Eukarya (Trm7) have already been identified, but until now, no information is available for the archaeal enzyme. In this work we have identified the methyltransferase of the archaeon Sulfolobus acidocaldarius responsible for the 2'-O-methylation at position 32. This enzyme is a homolog of the bacterial TrmJ. Remarkably, both enzymes have different specificities for the nature of the nucleoside at position 32. While the four canonical nucleosides are substrates of the Escherichia coli enzyme, the archaeal TrmJ can only methylate the ribose of a cytidine. Moreover, the two enzymes recognize their tRNA substrates in a different way. We have solved the crystal structure of the catalytic domain of both enzymes to gain better understanding of these differences at a molecular level.


Assuntos
RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Archaea/genética , Archaea/metabolismo , Proteínas de Bactérias/metabolismo , Catálise , Escherichia coli/genética , Escherichia coli/metabolismo , Sequências Repetidas Invertidas , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Nucleosídeos/química , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , RNA de Transferência/química , RNA de Transferência/genética , Reprodutibilidade dos Testes , Especificidade por Substrato , tRNA Metiltransferases/química
3.
J Vis Exp ; (145)2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30958484

RESUMO

High-brilliance X-ray beams coupled with automation have led to the use of synchrotron-based macromolecular X-ray crystallography (MX) beamlines for even the most challenging projects in structural biology. However, most facilities still require the presence of a scientist on site to perform the experiments. A new generation of automated beamlines dedicated to the fully automatic characterization of, and data collection from, crystals of biological macromolecules has recently been developed. These beamlines represent a new tool for structural biologists to screen the results of initial crystallization trials and/or the collection of large numbers of diffraction data sets, without users having to control the beamline themselves. Here we show how to set up an experiment for automatic screening and data collection, how an experiment is performed at the beamline, how the resulting data sets are processed, and how, when possible, the crystal structure of the biological macromolecule is solved.


Assuntos
Cristalografia por Raios X , Substâncias Macromoleculares/química , Cristalografia por Raios X/instrumentação , Coleta de Dados , Síncrotrons
4.
Sci Rep ; 8(1): 18008, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30573755

RESUMO

The availability of genomic data from extinct homini such as Neanderthals has caused a revolution in palaeontology allowing the identification of modern human-specific protein substitutions. Currently, little is known as to how these substitutions alter the proteins on a molecular level. Here, we investigate adenylosuccinate lyase, a conserved enzyme involved in purine metabolism for which several substitutions in the modern human protein (hADSL) have been described to affect intelligence and behaviour. During evolution, modern humans acquired a specific substitution (Ala429Val) in ADSL distinguishing it from the ancestral variant present in Neanderthals (nADSL). We show here that despite this conservative substitution being solvent exposed and located distant from the active site, there is a difference in thermal stability, but not enzymology or ligand binding between nADSL and hADSL. Substitutions near residue 429 which do not profoundly affect enzymology were previously reported to cause neurological symptoms in humans. This study also reveals that ADSL undergoes conformational changes during catalysis which, together with the crystal structure of a hitherto undetermined product bound conformation, explains the molecular origin of disease for several modern human ADSL mutants.


Assuntos
Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Evolução Molecular , Homem de Neandertal/genética , Sequência de Aminoácidos , Animais , Catálise , Domínio Catalítico , Cristalização , Estabilidade Enzimática , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Conformação Proteica , Mudança Social , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA