Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Acta Neuropathol ; 140(3): 415, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632518

RESUMO

In the original article, the panels "Brain organoids" and "Transgenics" were included in Fig. 5 without permission.

2.
Brain ; 141(1): 37-47, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053771

RESUMO

The cerebellum has long been regarded as essential only for the coordination of voluntary motor activity and motor learning. Anatomical, clinical and neuroimaging studies have led to a paradigm shift in the understanding of the cerebellar role in nervous system function, demonstrating that the cerebellum appears integral also to the modulation of cognition and emotion. The search to understand the cerebellar contribution to cognitive processing has increased interest in exploring the role of the cerebellum in neurodegenerative and neuropsychiatric disorders. Principal among these is Alzheimer's disease. Here we review an already sizeable existing literature on the neuropathological, structural and functional neuroimaging studies of the cerebellum in Alzheimer's disease. We consider these observations in the light of the cognitive deficits that characterize Alzheimer's disease and in so doing we introduce a new perspective on its pathophysiology and manifestations. We propose an integrative hypothesis that there is a cerebellar contribution to the cognitive and neuropsychiatric deficits in Alzheimer's disease. We draw on the dysmetria of thought theory to suggest that this cerebellar component manifests as deficits in modulation of the neurobehavioural deficits. We provide suggestions for future studies to investigate this hypothesis and, ultimately, to establish a comprehensive, causal clinicopathological disease model.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Cerebelo/fisiopatologia , Transtornos Cognitivos/etiologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Humanos , Neuroimagem
3.
Acta Neuropathol ; 135(6): 811-826, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29705908

RESUMO

The nervous system is composed of a large variety of neurons with a diverse array of morphological and functional properties. This heterogeneity is essential for the construction and maintenance of a distinct set of neural networks with unique characteristics. Accumulating evidence now indicates that neurons do not only differ at a functional level, but also at the genomic level. These genomic discrepancies seem to be the result of somatic mutations that emerge in nervous tissue during development and aging. Ultimately, these mutations bring about a genetically heterogeneous population of neurons, a phenomenon that is commonly referred to as "somatic brain mosaicism". Improved understanding of the development and consequences of somatic brain mosaicism is crucial to understand the impact of somatic mutations on neuronal function in human aging and disease. Here, we highlight a number of topics related to somatic brain mosaicism, including some early experimental evidence for somatic mutations in post-mitotic neurons of the hypothalamo-neurohypophyseal system. We propose that age-related somatic mutations are particularly interesting, because aging is a major risk factor for a variety of neuronal diseases, including Alzheimer's disease. We highlight potential links between somatic mutations and the development of these diseases and argue that recent advances in single-cell genomics and in vivo physiology have now finally made it possible to dissect the origins and consequences of neuronal mutations in unprecedented detail.


Assuntos
Envelhecimento/genética , Mutação , Degeneração Neural/genética , Doenças Neurodegenerativas/genética , Animais , Humanos
4.
Hum Mol Genet ; 24(5): 1305-21, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25343989

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a segmental progeroid syndrome with multiple features suggestive of premature accelerated aging. Accumulation of progerin is thought to underlie the pathophysiology of HGPS. However, despite ubiquitous expression of lamin A in all differentiated cells, the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin have also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS mutation in brain, skin, bone and heart to investigate how the mutation affects these organs. Ultrastructural analysis of neuronal nuclei after 70 weeks of expression of the LMNA c.1824C>T mutation showed severe distortion with multiple lobulations and irregular extensions. Despite severe distortions in the nuclei of hippocampal neurons of HGPS animals, there were only negligible changes in gene expression after 63 weeks of transgenic expression. Behavioral analysis and neurogenesis assays, following long-term expression of the HGPS mutation, did not reveal significant pathology. Our results suggest that certain tissues are protected from functional deleterious effects of progerin.


Assuntos
Envelhecimento/genética , Regulação da Expressão Gênica , Hipocampo/metabolismo , Lamina Tipo A/metabolismo , Células-Tronco/metabolismo , Senilidade Prematura/genética , Animais , Diferenciação Celular , Feminino , Processamento de Imagem Assistida por Computador , Lamina Tipo A/genética , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurogênese , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Cerebellum ; 16(3): 746-750, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27966098

RESUMO

The ubiquitin-proteasome system (UPS) is one of the major mechanisms for protein breakdown in cells, targeting proteins for degradation by enzymatically conjugating them to ubiquitin molecules. Intracellular accumulation of ubiquitin-B+1 (UBB+1), a frameshift mutant of ubiquitin-B, is indicative of a dysfunctional UPS and has been implicated in several disorders, including neurodegenerative disease. UBB+1-expressing transgenic mice display widespread labeling for UBB+1 in brain and exhibit behavioral deficits. Here, we show that UBB+1 is specifically expressed in a subset of parasagittal stripes of Purkinje cells in the cerebellar cortex of a UBB+1-expressing mouse model. This expression pattern is reminiscent of that of the constitutively expressed Purkinje cell antigen HSP25, a small heat shock protein with neuroprotective properties.


Assuntos
Cerebelo/metabolismo , Mutação/genética , Células de Purkinje/metabolismo , Ubiquitina/genética , Animais , Córtex Cerebelar/metabolismo , Expressão Gênica/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
Cell Tissue Res ; 356(1): 261-78, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24664117

RESUMO

The ubiquitin-proteasome system (UPS) controls intracellular protein turnover in a substrate-specific manner via E3-type ubiquitin ligases. Mammalian fertilization and particularly sperm penetration through the oocyte vitelline coat, the zona pellucida (ZP), is regulated by UPS. We use an extrinsic substrate of the proteasome-dependent ubiquitin-fusion degradation pathway, the mutant ubiquitin UBB(+1), to provide evidence that an E3-type ligase activity exists in sperm-acrosomal fractions. Protein electrophoresis gels from such de novo ubiquitination experiments contained a unique protein band identified by tandem mass spectrometry as being similar to ubiquitin ligase UBR7 (alternative name: C14ORF130). Corresponding mRNA was amplified from boar testis and several variants of the UBR7 protein were detected in boar, mouse and human sperm extracts by Western blotting. Genomic analysis indicated a high degree of evolutionary conservation, remarkably constant purifying selection and conserved testis expression of the UBR7 gene. By immunofluorescence, UBR7 was localized to the spermatid acrosomal cap and sperm acrosome, in addition to hotspots of proteasomal activity in spermatids, such as the cytoplasmic lobe, caudal manchette, nucleus and centrosome. During fertilization, UBR7 remained with the ZP-bound acrosomal shroud following acrosomal exocytosis. Thus, UBR7 is present in the acrosomal cap of round spermatids and within the acrosomal matrix of mature boar spermatozoa. These data provide the first evidence of ubiquitin ligase activity in mammalian spermatozoa and indicate UBR7 involvement in spermiogenesis.


Assuntos
Espermatozoides/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Acrossomo/efeitos dos fármacos , Acrossomo/metabolismo , Animais , Anticorpos Bloqueadores/farmacologia , Western Blotting , Fertilização in vitro , Imunofluorescência , Humanos , Masculino , Camundongos , Filogenia , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermátides/citologia , Espermátides/efeitos dos fármacos , Espermátides/metabolismo , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Suínos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Ubiquitina-Proteína Ligases/genética
7.
Nat Commun ; 14(1): 5922, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739965

RESUMO

Alzheimer's disease (AD) is characterized by toxic protein accumulation in the brain. Ubiquitination is essential for protein clearance in cells, making altered ubiquitin signaling crucial in AD development. A defective variant, ubiquitin B + 1 (UBB+1), created by a non-hereditary RNA frameshift mutation, is found in all AD patient brains post-mortem. We now detect UBB+1 in human brains during early AD stages. Our study employs a 3D neural culture platform derived from human neural progenitors, demonstrating that UBB+1 alone induces extracellular amyloid-ß (Aß) deposits and insoluble hyperphosphorylated tau aggregates. UBB+1 competes with ubiquitin for binding to the deubiquitinating enzyme UCHL1, leading to elevated levels of amyloid precursor protein (APP), secreted Aß peptides, and Aß build-up. Crucially, silencing UBB+1 expression impedes the emergence of AD hallmarks in this model system. Our findings highlight the significance of ubiquitin signalling as a variable contributing to AD pathology and present a nonclinical platform for testing potential therapeutics.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Transdução de Sinais , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Técnicas de Cultura de Células em Três Dimensões
8.
Acta Neuropathol ; 124(2): 187-97, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22730000

RESUMO

Aging and neurodegeneration are often accompanied by a functionally impaired ubiquitin-proteasome system (UPS). In tauopathies and polyglutamine diseases, a mutant form of ubiquitin B (UBB(+1)) accumulates in disease-specific aggregates. UBB(+1) mRNA is generated at low levels in vivo during transcription from the ubiquitin B locus by molecular misreading. The resulting mutant protein has been shown to inhibit proteasome function. To elucidate causative effects and neuropathological consequences of UBB(+1) accumulation, we used a UBB(+1) expressing transgenic mouse line that models UPS inhibition in neurons and exhibits behavioral phenotypes reminiscent of Alzheimer's disease (AD). In order to reveal affected organs and functions, young and aged UBB(+1) transgenic mice were comprehensively phenotyped for more than 240 parameters. This revealed unexpected changes in spontaneous breathing patterns and an altered response to hypoxic conditions. Our findings point to a central dysfunction of respiratory regulation in transgenic mice in comparison to wild-type littermate mice. Accordingly, UBB(+1) was strongly expressed in brainstem regions of transgenic mice controlling respiration. These regions included, e.g., the medial part of the nucleus of the tractus solitarius and the lateral subdivisions of the parabrachial nucleus. In addition, UBB(+1) was also strongly expressed in these anatomical structures of AD patients (Braak stage #6) and was not expressed in non-demented controls. We conclude that long-term UPS inhibition due to UBB(+1) expression causes central breathing dysfunction in a transgenic mouse model of AD. The UBB(+1) expression pattern in humans is consistent with the contribution of bronchopneumonia as a cause of death in AD patients.


Assuntos
Doença de Alzheimer/patologia , Tronco Encefálico/fisiopatologia , Complexo de Endopeptidases do Proteassoma/genética , Respiração , Ubiquitina/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
9.
Mol Cell Neurosci ; 43(3): 281-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20005957

RESUMO

UBB(+1), a mutant form of ubiquitin, is both a substrate and an inhibitor of the proteasome which accumulates in the neuropathological hallmarks of Huntington disease (HD). In vitro, expression of UBB(+1) and mutant huntingtin synergistically increase aggregate formation and polyglutamine induced cell death. We generated a UBB(+1) transgenic mouse line expressing UBB(+1) within the neurons of the striatum. In these mice lentiviral driven expression of expanded huntingtin constructs in the striatum results in a significant increase in neuronal inclusion formation. Although UBB(+1) transgenic mice show neither a decreased lifespan nor apparent neuronal loss, they appear to be more vulnerable to toxic insults like expanded polyglutamine proteins due to a modest proteasome inhibition. These findings underscore the relevance of an efficient ubiquitin-proteasome system in HD.


Assuntos
Modelos Animais de Doenças , Doença de Huntington/patologia , Inibidores de Proteassoma , Ubiquitina/metabolismo , Animais , Morte Celular , Proteína Huntingtina , Doença de Huntington/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Peptídeos/toxicidade , Ubiquitina/genética
10.
J Neurosci Res ; 88(11): 2325-37, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20336771

RESUMO

The ubiquitin-proteasome system fulfills a pivotal role in regulating intracellular protein turnover. Impairment of this system is implicated in the pathogenesis of neurodegenerative diseases characterized by ubiquitin- containing proteinaceous deposits. UBB(+1), a mutant ubiquitin, is one of the proteins accumulating in the neuropathological hallmarks of tauopathies, including Alzheimer's disease, and polyglutamine diseases. In vitro, UBB(+1) properties shift from a proteasomal ubiquitin-fusion degradation substrate at low expression levels to a proteasome inhibitor at high expression levels. Here we report on a novel transgenic mouse line (line 6663) expressing low levels of neuronal UBB(+1). In these mice, UBB(+1) protein is scarcely detectable in the neuronal cell population. Accumulation of UBB(+1) commences only after intracranial infusion of the proteasome inhibitors lactacystin or MG262, showing that, at these low expression levels, the UBB(+1) protein is a substrate for proteasomal degradation in vivo. In addition, accumulation of the protein serves as a reporter for proteasome inhibition. These findings strengthen our proposition that, in healthy brain, UBB(+1) is continuously degraded and disease-related UBB(+1) accumulation serves as an endogenous marker for proteasomal dysfunction. This novel transgenic line can give more insight into the intrinsic properties of UBB(+1) and its role in neurodegenerative disease.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Envelhecimento/fisiologia , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Linhagem Celular , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Radioimunoensaio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidores de Serina Proteinase/farmacologia
11.
Cell Tissue Res ; 341(2): 325-40, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20526895

RESUMO

Proteolysis of ubiquitinated sperm and oocyte proteins by the 26S proteasome is necessary for the success of mammalian fertilization, including but not limited to acrosomal exocytosis and sperm-zona pellucida (ZP) penetration. The present study examined the role of PSMD4, an essential non-ATPase subunit of the proteasomal 19S regulatory complex responsible for proteasome-substrate recognition, in sperm-ZP penetration during porcine fertilization in vitro (IVF). Porcine sperm-ZP penetration, but not sperm-ZP binding, was blocked in the presence of a monoclonal anti-PSMD4 antibody during IVF. Inclusion in the fertilization medium of mutant ubiquitins (Ub+1 and Ub5+1), which are refractory to processing by the 19S regulatory complex and associated with Alzheimer's disease, also inhibited fertilization. This observation suggested that subunit PSMD4 is exposed on the sperm acrosomal surface, a notion that was further supported by the binding of non-cell permeant, biotinylated proteasomal inhibitor ZL3VS to the sperm acrosome. Immunofluorescence localized PSMD4 in the sperm acrosome. Immunoprecipitation and proteomic analysis revealed that PSMD4 co-precipitated with porcine sperm-associated acrosin inhibitor (AI). Ubiquitinated species of AI were isolated from boar sperm extracts by affinity purification of ubiquitinated proteins using the recombinant UBA domain of p62 protein. Some proteasomes appeared to be anchored to the sperm head inner acrosomal membrane, as documented by co-fractionation studies. In conclusion, the 19S regulatory complex subunit PSMD4 is involved in the sperm-ZP penetration during fertilization. The recognition of substrates on the ZP by the 19S proteasomal regulatory complex is essential for the success of porcine/mammalian fertilization in vitro.


Assuntos
Inibidores de Proteassoma , Interações Espermatozoide-Óvulo , Espermatozoides/enzimologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Western Blotting , Proteínas de Transporte/imunologia , Fertilização in vitro/efeitos dos fármacos , Masculino , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Proteínas Secretadas pela Vesícula Seminal/imunologia , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Suínos , Inibidor da Tripsina Pancreática de Kazal/imunologia , Proteínas Ubiquitinadas/metabolismo
12.
Prog Neurobiol ; 85(2): 176-93, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18448229

RESUMO

The ubiquitin-proteasome system (UPS) is the main intracellular pathway for regulated protein turnover. This system is of vital importance for maintaining cellular homeostasis and is essential for neuronal functioning. It is therefore not surprising that impairment of this system is implicated in the pathogenesis of a variety of diseases, including neurological disorders, which are pathologically characterized by the presence of ubiquitin-positive protein aggregates. A direct correlation between intact neuronal functioning and the UPS is exemplified by a range of transgenic mouse models wherein mutations in components of the UPS lead to a neurodegenerative or neurological phenotype. These models have been proven useful in determining the role of the UPS in the nervous system in health and disease. Furthermore, recently developed in vivo models harboring reporter systems to measure UPS activity could also substantially contribute to understanding the effect of neurodegeneration on UPS function. The role of the UPS in neurodegeneration in vivo is reviewed by discussing the currently available murine models showing a neurological phenotype induced by genetic manipulation of the UPS.


Assuntos
Modelos Animais de Doenças , Camundongos Transgênicos , Doenças Neurodegenerativas/genética , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/genética , Animais , Camundongos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
13.
J Neuropathol Exp Neurol ; 79(8): 902-907, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32647880

RESUMO

Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) is a progressive neurodegenerative disorder that is endemic to the Kii peninsula of Japan. The disorder is clinically characterized by a variable combination of parkinsonism, dementia, and motor neuron symptoms. Despite extensive investigations, the etiology and pathogenesis of ALS/PDC remain unclear. At the neuropathological level, Kii ALS/PDC is characterized by neuronal loss and tau-dominant polyproteinopathy. Here, we report the accumulation of several proteins involved in protein homeostasis pathways, that is, the ubiquitin-proteasome system and the autophagy-lysosome pathway, in postmortem brain tissue from a number of Kii ALS/PDC cases (n = 4). Of particular interest is the presence of a mutant ubiquitin protein (UBB+1), which is indicative of disrupted ubiquitin homeostasis. The findings suggest that abnormal protein aggregation is linked to impaired protein homeostasis pathways in Kii ALS/PDC.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Encéfalo/patologia , Ubiquitina/genética , Encéfalo/metabolismo , Mutação da Fase de Leitura , Humanos , Japão , Proteostase/genética , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia
14.
J Neuropathol Exp Neurol ; 79(1): 34-45, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31750913

RESUMO

Guam parkinsonism-dementia (G-PD) is a progressive and fatal neurodegenerative disorder among the native inhabitants of the Mariana Islands that manifests clinically with parkinsonism as well as dementia. Neuropathologically, G-PD is characterized by abundant neurofibrillary tangles composed of hyperphosphorylated tau, marked deposition of transactive response DNA-binding protein 43 kDa (TDP-43), and neuronal loss. The mechanisms that underlie neurodegeneration in G-PD are poorly understood. Here, we report that the unfolded protein response (UPR) is activated in G-PD brains. Specifically, we show that the endoplasmic reticulum (ER) chaperone binding immunoglobulin protein/glucose-regulated protein 78 kDa and phosphorylated (activated) ER stress sensor protein kinase RNA-like ER kinase accumulate in G-PD brains. Furthermore, proteinaceous aggregates in G-PD brains are found to contain several proteins related to the ubiquitin-proteasome system (UPS) and the autophagy pathway, two major mechanisms for intracellular protein degradation. In particular, a mutant ubiquitin (UBB+1), whose presence is a marker for UPS dysfunction, is shown to accumulate in G-PD brains. We demonstrate that UBB+1 is a potent modifier of TDP-43 aggregation and cytotoxicity in vitro. Overall, these data suggest that UPR activation and intracellular proteolytic pathways are intimately connected with the accumulation of aggregated proteins in G-PD.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Deficiências na Proteostase/patologia , Resposta a Proteínas não Dobradas , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Autofagia , Encéfalo/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Deficiências na Proteostase/genética , Transdução de Sinais/genética , Ubiquitina/genética , Ubiquitina/metabolismo
15.
J Cell Biol ; 157(3): 417-27, 2002 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-11980917

RESUMO

Loss of neurons in neurodegenerative diseases is usually preceded by the accumulation of protein deposits that contain components of the ubiquitin/proteasome system. Affected neurons in Alzheimer's disease often accumulate UBB(+1), a mutant ubiquitin carrying a 19-amino acid C-terminal extension generated by a transcriptional dinucleotide deletion. Here we show that UBB(+1) is a potent inhibitor of ubiquitin-dependent proteolysis in neuronal cells, and that this inhibitory activity correlates with induction of cell cycle arrest. Surprisingly, UBB(+1) is recognized as a ubiquitin fusion degradation (UFD) proteasome substrate and ubiquitinated at Lys29 and Lys48. Full blockade of proteolysis requires both ubiquitination sites. Moreover, the inhibitory effect was enhanced by the introduction of multiple UFD signals. Our findings suggest that the inhibitory activity of UBB(+1) may be an important determinant of neurotoxicity and contribute to an environment that favors the accumulation of misfolded proteins.


Assuntos
Cisteína Endopeptidases/metabolismo , Complexos Multienzimáticos/metabolismo , Mutação , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Ubiquitina/genética , Ciclo Celular , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Proteínas Luminescentes/genética , Lisina/metabolismo , Complexos Multienzimáticos/antagonistas & inibidores , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Complexo de Endopeptidases do Proteassoma , Proteínas/metabolismo , Especificidade por Substrato , Células Tumorais Cultivadas , Ubiquitina/antagonistas & inibidores , Ubiquitina/metabolismo
16.
Brain ; 131(Pt 6): 1416-32, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18234698

RESUMO

Argyrophilic grain disease (AGD) is a common sporadic neurodegenerative disease of old age characterized by the presence of argyrophilic grains (AGs)--dendritic-derived appendages as revealed with the Golgi method--together with pre-tangle neurons in the limbic system, which accounts for about 5% of all demented cases. AGs and pre-tangle neurons contain hyperphosphorylated 4R tau. This is associated with a typical 64 kDa and 68 kDa pattern, but also accompanied by tau truncated forms of low molecular mass, probably resulting from thrombin-mediated proteolysis. Hyperphosphorylated tau also accumulates in oligodendroglial-coiled bodies and in limbic astrocytes. Ballooning neurons in the amygdala are non-specific accompanying abnormalities. A new proposal for AG distribution considers four stages. Clinical symptoms largely depend on the extension of AGs together with the very common associated tauopathies, mainly Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and synucleinopathies. Pathogenesis of AG and related lesions herein proposed includes oxidative stress that is followed by increased expression of oxidative response markers, and activation of stress kinases (stress activated protein kinase and p38). These kinases together with glycogen synthase kinase 3beta co-localize with hyperphosphorylated tau deposits in neurons and glial cells, thus indicating a link between oxidative stress and tau phosphorylation in AGD. Hyperphosphorylated tau, in turn, co-localizes with p62/sequestosome 1 and ubiquitin, thus pointing to activation of protein aggregation and protein degradation pathways, respectively. Finally, AGs and tangles co-localize with mutant ubiquitin (UBB(+1)) resulting from molecular misreading of mRNA, thus supporting proteasome function impairment and, therefore, impelling accumulation of hyperphosphorylated tau in AGs and tangles. The sequestration of active kinases in AGs and tangles is an additional local cause of tau hyperphosphorylation.


Assuntos
Demência/metabolismo , Doenças Neurodegenerativas/metabolismo , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Humanos , Mutação , Estresse Oxidativo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas tau/genética
17.
Prog Mol Biol Transl Sci ; 168: 219-221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31699316

RESUMO

The Alzheimer's disease (AD) field urgently needs new ideas. I offer here a number of thoughts focusing on the combination of the cellular phase of AD and new bionic techniques. These techniques enable to answer alternative hypotheses raised and help to unravel the multifactorial mechanisms initiating Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Terapia de Alvo Molecular , Animais , Humanos
18.
Proteomics ; 8(6): 1221-36, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18283660

RESUMO

Accumulation of proteins in inclusions in neurological disorders is partly due to dysfunction of the ubiquitin-proteasome system. Proteasomal dysfunction may be caused by misexpression of one or more of its subunits. A large number of antibodies reactive with proteasome subunits were screened on material from patients exhibiting tau- and synucleinopathies. Many antisera against proteasomal subunits (11S activator, 19S regulator ATPase/non-ATPase, and 20S alpha and beta resulted in a distinct nuclear and/or cytoplasmic staining of the entorhinal-hippocampal area and the temporal cortex of Alzheimer's disease (AD) patients. In particular an antibody directed against 19S regulator ATPase subunit 6b (S6b) specifically stained the neurofibrillary tangles and dystrophic neurites in AD, Down syndrome and aged nondemented controls. In other tauopathies (Pick's disease, frontotemporal dementia, progressive supranuclear palsy and argyrophilic grain disease), neuronal and/or glial inclusions were also S6b immunoreactive. In contrast, in synucleinopathies (Lewy body disease (LBD) and multiple system atrophy) no S6b staining was seen. Real time quantitative PCR on the temporal cortex of AD patients revealed a significant increase in S6b subunit mRNA. This increase was not found in the gyrus cinguli anterior of patients with LBD. This differential expression of S6b most likely will result in different proteomic patterns. Here we present evidence to show that S6b coexists with a reporter for proteasomal dysfunction (ubiquitin(+1)), and we conclude that S6b transcript up-regulation and the dysfunction in tauopathies may be functionally related.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Sinucleínas/metabolismo , Tauopatias/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Anticorpos/imunologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Modelos Biológicos , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Doença de Pick/metabolismo , Doença de Pick/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tauopatias/patologia , Lobo Temporal/metabolismo , Lobo Temporal/patologia
19.
Front Neurol ; 9: 173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615966

RESUMO

Guam parkinsonism-dementia complex (G-PDC) is an enigmatic neurodegenerative disease that is endemic to the Pacific island of Guam. G-PDC patients are clinically characterized by progressive cognitive impairment and parkinsonism. Neuropathologically, G-PDC is characterized by abundant neurofibrillary tangles, which are composed of hyperphosphorylated tau, marked deposition of 43-kDa TAR DNA-binding protein, and neuronal loss. Although both genetic and environmental factors have been implicated, the etiology and pathogenesis of G-PDC remain unknown. Recent neuropathological studies have provided new clues about the pathomechanisms involved in G-PDC. For example, deposition of abnormal components of the protein quality control system in brains of G-PDC patients indicates a role for proteostasis imbalance in the disease. This opens up promising avenues for new research on G-PDC and could have important implications for the study of other neurodegenerative disorders.

20.
Transl Neurosci ; 9: 190-202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30746282

RESUMO

Brain aging has been associated with aberrant DNA methylation patterns, and changes in the levels of DNA methylation and associated markers have been observed in the brains of Alzheimer's disease (AD) patients. DNA hydroxymethylation, however, has been sparsely investigated in aging and AD. We have previously reported robust decreases in 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in the hippocampus of AD patients compared to non-demented controls. In the present study, we investigated 3- and 9-month-old APPswe/PS1ΔE9 transgenic and wild-type mice for possible age-related alterations in 5-mC and 5-hmC levels in three hippocampal sub-regions using quantitative immunohistochemistry. While age-related increases in levels of both 5-mC and 5-hmC were found in wild-type mice, APPswe/PS1ΔE9 mice showed decreased levels of 5-mC at 9 months of age and no age-related changes in 5-hmC throughout the hippocampus. Altogether, these findings suggest that aberrant amyloid processing impact on the balance between DNA methylation and hydroxymethylation in the hippocampus during aging in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA