Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 206(2): e0033123, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38197635

RESUMO

The Pel exopolysaccharide is one of the most mechanistically conserved and phylogenetically diverse bacterial biofilm matrix determinants. Pel is a major contributor to the structural integrity of Pseudomonas aeruginosa biofilms, and its biosynthesis is regulated by the binding of cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP) to the PelD receptor. c-di-GMP is synthesized from two molecules of guanosine triphosphate (GTP) by diguanylate cyclases with GGDEF domains and degraded by phosphodiesterases with EAL or HD-GYP domains. As the P. aeruginosa genome encodes 43 c-di-GMP metabolic enzymes, one way signaling specificity can be achieved is through direct interaction between specific enzyme-receptor pairs. Here, we show that the inner membrane hybrid GGDEF-EAL enzyme, BifA, directly interacts with PelD via its cytoplasmic HAMP, GGDEF, and EAL domains. Despite having no catalytic function, the degenerate active site motif of the BifA GGDEF domain (GGDQF) has retained the ability to bind GTP with micromolar affinity. Mutations that abolish GTP binding result in increased biofilm formation but stable global c-di-GMP levels. Our data suggest that BifA forms a dimer in solution and that GTP binding induces conformational changes in dimeric BifA that enhance the BifA-PelD interaction and stimulate its phosphodiesterase activity, thus reducing c-di-GMP levels and downregulating Pel biosynthesis. Structural comparisons between the dimeric AlphaFold2 model of BifA and the structures of other hybrid GGDEF-EAL proteins suggest that the regulation of BifA by GTP may occur through a novel mechanism.IMPORTANCEc-di-GMP is the most common cyclic dinucleotide used by bacteria to regulate phenotypes such as motility, biofilm formation, virulence factor production, cell cycle progression, and cell differentiation. While the identification and initial characterization of c-di-GMP metabolic enzymes are well established, our understanding of how these enzymes are regulated to provide signaling specificity remains understudied. Here we demonstrate that the inactive GGDEF domain of BifA binds GTP and regulates the adjacent phosphodiesterase EAL domain, ultimately downregulating Pel-dependent P. aeruginosa biofilm formation through an interaction with PelD. This discovery adds to the growing body of literature regarding how hybrid GGDEF-EAL enzymes are regulated and provides additional precedence for studying how direct interactions between c-di-GMP metabolic enzymes and effectors result in signaling specificity.


Assuntos
Proteínas de Escherichia coli , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , GMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica
2.
J Fungi (Basel) ; 8(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35448567

RESUMO

The mold Aspergillus fumigatus and bacterium Pseudomonas aeruginosa form biofilms in the airways of individuals with cystic fibrosis. Biofilm formation by A. fumigatus depends on the self-produced cationic exopolysaccharide galactosaminogalactan (GAG), while P. aeruginosa biofilms can contain the cationic exopolysaccharide Pel. GAG and Pel are rendered cationic by deacetylation mediated by either the secreted deacetylase Agd3 (A. fumigatus) or the periplasmic deacetylase PelA (P. aeruginosa). Given the similarities between these polymers, the potential for biofilm interactions between these organisms were investigated. P. aeruginosa were observed to adhere to A. fumigatus hyphae in a GAG-dependent manner and to GAG-coated coverslips of A. fumigatus biofilms. In biofilm adherence assays, incubation of P. aeruginosa with A. fumigatus culture supernatants containing de-N-acetylated GAG augmented the formation of adherent P. aeruginosa biofilms, increasing protection against killing by the antibiotic colistin. Fluorescence microscopy demonstrated incorporation of GAG within P. aeruginosa biofilms, suggesting that GAG can serve as an alternate biofilm exopolysaccharide for this bacterium. In contrast, Pel-containing bacterial culture supernatants only augmented the formation of adherent A. fumigatus biofilms when antifungal inhibitory molecules were removed. This study demonstrates biofilm interaction via exopolysaccharides as a potential mechanism of co-operation between these organisms in chronic lung disease.

3.
Nat Commun ; 11(1): 2450, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415073

RESUMO

The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Deletion of a gene encoding a putative deacetylase, Agd3, leads to defects in GAG deacetylation, biofilm formation, and virulence. Here, we show that Agd3 deacetylates GAG in a metal-dependent manner, and is the founding member of carbohydrate esterase family CE18. The active site is formed by four catalytic motifs that are essential for activity. The structure of Agd3 includes an elongated substrate-binding cleft formed by a carbohydrate binding module (CBM) that is the founding member of CBM family 87. Agd3 homologues are encoded in previously unidentified putative bacterial exopolysaccharide biosynthetic operons and in other fungal genomes.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/fisiologia , Biofilmes/crescimento & desenvolvimento , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Acetilação , Sequência de Aminoácidos , Aspergillus fumigatus/genética , Domínio Catalítico , Sequência Conservada , Regulação Fúngica da Expressão Gênica , Glicosaminoglicanos/biossíntese , Metais/metabolismo , Domínios Proteicos , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA