Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(17): e0072322, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35975999

RESUMO

The production of type I interferon (IFN) is the hallmark of the innate immune response. Most, if not all, mammalian viruses have a way to circumvent this response. Fundamental knowledge on viral evasion of innate immune responses may facilitate the design of novel antiviral therapies. To investigate how human metapneumovirus (HMPV) interacts with the innate immune response, recombinant viruses lacking G, short hydrophobic (SH), or M2-2 protein expression were assessed for IFN induction in A549 cells. HMPV lacking G or SH protein expression induced similarly low levels of IFN, compared to the wild-type virus, whereas HMPV lacking M2-2 expression induced significantly more IFN than the wild-type virus. However, sequence analysis of the genomes of M2-2 mutant viruses revealed large numbers of mutations throughout the genome. Over 70% of these nucleotide substitutions were A-to-G and T-to-C mutations, consistent with the properties of the adenosine deaminase acting on RNA (ADAR) protein family. Knockdown of ADAR1 by CRISPR interference confirmed the role of ADAR1 in the editing of M2-2 deletion mutant virus genomes. More importantly, Northern blot analyses revealed the presence of defective interfering RNAs (DIs) in M2-2 mutant viruses and not in the wild-type virus or G and SH deletion mutant viruses. DIs are known to be potent inducers of the IFN response. The presence of DIs in M2-2 mutant virus stocks and hypermutated virus genomes interfere with studies on HMPV and the innate immune response and should be addressed in future studies. IMPORTANCE Understanding the interaction between viruses and the innate immune response is one of the barriers to the design of antiviral therapies. Here, we investigated the role of the G, SH, and M2-2 proteins of HMPV as type I IFN antagonists. In contrast to other studies, no IFN-antagonistic functions could be observed for the G and SH proteins. HMPV with a deletion of the M2-2 protein did induce type I IFN production upon infection of airway epithelial cells. However, during generation of virus stocks, these viruses rapidly accumulated DIs, which are strong activators of the type I IFN response. Additionally, the genomes of these viruses were hypermutated, which was prevented by generating stocks in ADAR knockdown cells, confirming a role for ADAR in hypermutation of HMPV genomes or DIs. These data indicate that a role of the HMPV M2-2 protein as a bona fide IFN antagonist remains elusive.


Assuntos
Imunidade Inata , Interferon Tipo I , Metapneumovirus , Proteínas Virais , Células A549 , Adenosina Desaminase , Antivirais/metabolismo , Humanos , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Metapneumovirus/genética , Metapneumovirus/metabolismo , Proteínas de Ligação a RNA , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30567988

RESUMO

The acute antiviral response is mediated by a family of interferon-stimulated genes (ISGs), providing cell-intrinsic immunity. Mutations in genes encoding these proteins are often associated with increased susceptibility to viral infections. One family of ISGs with antiviral function is the interferon-inducible transmembrane proteins (IFITMs), of which IFITM3 has been studied extensively. In contrast, IFITM1 has not been studied in detail. Since IFITM1 can localize to the plasma membrane, we investigated its function with a range of enveloped viruses thought to infect cells by fusion with the plasma membrane. Overexpression of IFITM1 prevented infection by a number of Paramyxoviridae and Pneumoviridae, including respiratory syncytial virus (RSV), mumps virus, and human metapneumovirus (HMPV). IFITM1 also restricted infection with an enveloped DNA virus that can enter via the plasma membrane, herpes simplex virus 1 (HSV-1). To test the importance of plasma membrane localization for IFITM1 function, we identified blocks of amino acids in the conserved intracellular loop (CIL) domain that altered the subcellular localization of the protein and reduced antiviral activity. By screening reported data sets, 12 rare nonsynonymous single nucleotide polymorphisms (SNPs) were identified in human IFITM1, some of which are in the CIL domain. Using an Ifitm1-/- mouse, we show that RSV infection was more severe, thereby extending the range of viruses restricted in vivo by IFITM proteins and suggesting overall that IFITM1 is broadly antiviral and that this antiviral function is associated with cell surface localization.IMPORTANCE Host susceptibility to viral infection is multifactorial, but early control of viruses not previously encountered is predominantly mediated by the interferon-stimulated gene (ISG) family. There are upwards of 300 of these genes, the majority of which do not have a clearly defined function or mechanism of action. The cellular location of these proteins may have an important effect on their function. One ISG located at the plasma membrane is interferon-inducible transmembrane protein 1 (IFITM1). Here we demonstrate that IFITM1 can inhibit infection with a range of viruses that enter via the plasma membrane. Mutant IFITM1 proteins that were unable to localize to the plasma membrane did not restrict viral infection. We also observed for the first time that IFITM1 plays a role in vivo, and Ifitm1-/- mice were more susceptible to viral lung infection. These data contribute to our understanding of how ISGs prevent viral infections.


Assuntos
Antígenos de Diferenciação/metabolismo , Membrana Celular/virologia , Paramyxoviridae/efeitos dos fármacos , Pneumovirinae/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Células A549 , Sequência de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Humanos , Interferons/farmacologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos , Células Vero
3.
Antimicrob Agents Chemother ; 60(8): 4620-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27185803

RESUMO

The clinical impact of infections with respiratory viruses belonging to the family Paramyxoviridae argues for the development of antiviral therapies with broad-spectrum activity. Favipiravir (T-705) has demonstrated potent antiviral activity against multiple RNA virus families and is presently in clinical evaluation for the treatment of influenza. Here we demonstrate in vitro activity of T-705 against the paramyxoviruses human metapneumovirus (HMPV), respiratory syncytial virus, human parainfluenza virus, measles virus, Newcastle disease virus, and avian metapneumovirus. In addition, we demonstrate activity against HMPV in hamsters. T-705 treatment inhibited replication of all paramyxoviruses tested in vitro, with 90% effective concentration (EC90) values of 8 to 40 µM. Treatment of HMPV-challenged hamsters with T-705 at 200 mg/kg of body weight/day resulted in 100% protection from infection of the lungs. In all treated and challenged animals, viral RNA remained detectable in the respiratory tract. The observation that T-705 treatment had a significant effect on infectious viral titers, with a limited effect on viral genome titers, is in agreement with its proposed mode of action of viral mutagenesis. However, next-generation sequencing of viral genomes isolated from treated and challenged hamsters did not reveal (hyper)mutation. Polymerase activity assays revealed a specific effect of T-705 on the activity of the HMPV polymerase. With the reported antiviral activity of T-705 against a broad range of RNA virus families, this small molecule is a promising broad-range antiviral drug candidate for limiting the viral burden of paramyxoviruses and for evaluation for treatment of infections with (re)emerging viruses, such as the henipaviruses.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Metapneumovirus/efeitos dos fármacos , Infecções por Paramyxoviridae/tratamento farmacológico , Pirazinas/farmacologia , Animais , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Cricetinae , Células HEK293 , Humanos , Pulmão/virologia , Mesocricetus , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacos
4.
Vet Microbiol ; 269: 109437, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35472508

RESUMO

Newcastle Disease virus (NDV) has shown promise as an oncolytic virus for treatment of a wide range of tumours. NDV with a multi-basic cleavage site (MBCS) in the fusion (F) protein (NDV F3aa) has increased oncolytic efficacy in several tumour models, but also increased virulence in chickens compared to non-virulent NDV F0, raising potential environmental safety issues. Previously, we generated a variant of NDV F3aa with a disrupted V protein gene and a substitution of phenylalanine to serine at position 117 of the F protein (NDV F3aa-S-STOPV). Compared to NDV F3aa this virus had decreased virulence in embryonated chicken eggs. In this study, the virulence of the virus was evaluated upon inoculation of six-week-old chickens through a natural infection route and by determination of the intracerebral pathogenicity index (ICPI). Based on these data NDV F3aa-S-STOPV classified as a non-virulent virus. Although NDV F3aa was classified as a virulent virus based on the ICPI, the virus was also less pathogenic than NDV F0 upon inoculation of six-week-old chickens. These data indicate that NDV with a MBCS is not necessarily pathogenic in chickens. In addition, these data show that F3aa-S-STOPV is safe to use in viro-immunotherapies without posing a threat for chickens upon accidental exposure.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Animais , Galinhas , Vírus da Doença de Newcastle/genética , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Virulência/genética
6.
Cancer Gene Ther ; 21(11): 463-71, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25257305

RESUMO

Newcastle disease virus (NDV) is an avian paramyxovirus with oncolytic potential. Detailed preclinical information regarding the safety of oncolytic NDV is scarce. In this study, we evaluated the toxicity, biodistribution and shedding of intravenously injected oncolytic NDVs in non-human primates (Macaca fascicularis). Two animals were injected with escalating doses of a non-recombinant vaccine strain, a recombinant lentogenic strain or a recombinant mesogenic strain. To study transmission, naive animals were co-housed with the injected animals. Injection with NDV did not lead to severe illness in the animals or abnormalities in hematologic or biochemistry measurements. Injected animals shed low amounts of virus, but this did not lead to seroconversion of the contact animals. Postmortem evaluation demonstrated no pathological changes or evidence of virus replication. This study demonstrates that NDV generated in embryonated chicken eggs is safe for intravenous administration to non-human primates. In addition, our study confirmed results from a previous report that naïve primate and human sera are able to neutralize egg-generated NDV. We discuss the implications of these results for our study and the use of NDV for virotherapy.


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Vírus da Doença de Newcastle/genética , Terapia Viral Oncolítica/métodos , Alantoide/virologia , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular , Embrião de Galinha , DNA Complementar/genética , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Injeções Intravenosas , Macaca fascicularis , Masculino , Mutagênese Sítio-Dirigida , Testes de Neutralização , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacinas Virais/administração & dosagem , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA