Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38971152

RESUMO

We identify a population of Protogenin-positive (PRTG+ve) MYChigh NESTINlow stem cells in the four-week-old human embryonic hindbrain that subsequently localizes to the ventricular zone of the rhombic lip (RLVZ). Oncogenic transformation of early Prtg+ve rhombic lip stem cells initiates group 3 medulloblastoma (Gr3-MB)-like tumors. PRTG+ve stem cells grow adjacent to a human-specific interposed vascular plexus in the RLVZ, a phenotype that is recapitulated in Gr3-MB but not in other types of medulloblastoma. Co-culture of Gr3-MB with endothelial cells promotes tumor stem cell growth, with the endothelial cells adopting an immature phenotype. Targeting the PRTGhigh compartment of Gr3-MB in vivo using either the diphtheria toxin system or chimeric antigen receptor T cells constitutes effective therapy. Human Gr3-MBs likely arise from early embryonic RLVZ PRTG+ve stem cells inhabiting a specific perivascular niche. Targeting the PRTGhigh compartment and/or the perivascular niche represents an approach to treat children with Gr3-MB.

2.
Cell ; 181(6): 1329-1345.e24, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32445698

RESUMO

Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


Assuntos
Ependimoma/genética , Ependimoma/metabolismo , Epigenoma/genética , Neoplasias Infratentoriais/genética , Neoplasias Infratentoriais/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Proliferação de Células/genética , Metilação de DNA/genética , Epigenômica/métodos , Histonas/genética , Histonas/metabolismo , Humanos , Lactente , Lisina/genética , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética
3.
Crit Rev Clin Lab Sci ; 56(1): 61-73, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30628494

RESUMO

The precision-based revolution in medicine continues to demand stratification of patients into smaller and more personalized subgroups. While genomic technologies have largely led this movement, diagnostic results can take days to weeks to generate. Management at, or closer to, the point of care still heavily relies on the subjective qualitative interpretation of clinical and diagnostic imaging findings. New and emerging technological advances in artificial intelligence (AI) now appear poised to help bring objectivity and precision to these traditionally qualitative analytic tools. In particular, one specific form of AI, known as deep learning, is achieving expert-level disease classifications in many areas of diagnostic medicine dependent on visual and image-based findings. Here, we briefly review concepts of deep learning, and more specifically recent developments in convolutional neural networks (CNNs), to highlight their transformative potential in personalized medicine and, in particular, diagnostic histopathology. Understanding the opportunities and challenges of these quantitative machine-based decision support tools is critical to their widespread introduction into routine diagnostics.


Assuntos
Aprendizado Profundo , Sistemas Automatizados de Assistência Junto ao Leito , Medicina de Precisão , Diagnóstico por Computador , Humanos , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão
4.
J Neurooncol ; 127(2): 209-19, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26842818

RESUMO

Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. There is a critical need for novel strategies to abolish the molecular mechanisms that support GBM growth, invasion and treatment resistance. The heat shock proteins, HSP27 and HSP90, serve these pivotal roles in tumor cells and have been identified as effective targets for developing therapeutics. Natural and synthetic inhibitors have been evaluated in clinical trials for several forms of systemic cancer but none as yet for GBM. This topic review summarizes the current preclinical evidence and rationale to define the potential of HSP27 and HSP90 inhibitors in GBM management.


Assuntos
Antineoplásicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Proteínas de Choque Térmico HSP27/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Terapia de Alvo Molecular , Adulto , Glioblastoma/metabolismo , Humanos
5.
Chin Neurosurg J ; 7(1): 6, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33423692

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor and the leading cause of brain tumor-related death in children. As several clinical trials over the past few decades have led to no significant improvements in outcome, the current standard of care remains fractionated focal radiation. Due to the recent increase in stereotactic biopsies, tumor tissue availabilities have enabled our advancement of the genomic and molecular characterization of this lethal cancer. Several groups have identified key histone gene mutations, genetic drivers, and methylation changes in DIPG, providing us with new insights into DIPG tumorigenesis. Subsequently, there has been increased development of in vitro and in vivo models of DIPG which have the capacity to unveil novel therapies and strategies for drug delivery. This review outlines the clinical characteristics, genetic landscape, models, and current treatments and hopes to shed light on novel therapeutic avenues and challenges that remain.

6.
Brain Pathol ; 30(3): 691-702, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31883407

RESUMO

Medulloblastoma (MB) is the most common primary malignant brain tumor of childhood and a significant contributor to pediatric morbidity and death. While metastatic dissemination is the predominant cause of morbidity and mortality for patients with this disease, most research efforts and clinical trials to date have focused on the primary tumor; this is due mostly to the paucity of metastatic tumor samples and lack of robust mouse models of MB dissemination. Most current insights into the molecular drivers of metastasis have been derived from comparative molecular studies of metastatic and non-metastatic primary tumors. However, small studies on matched primary and metastatic tissues and recently developed mouse models of dissemination have begun to uncover the molecular biology of MB metastasis more directly. With respect to anatomical routes of dissemination, a hematogenous route for MB metastasis has recently been demonstrated, opening new avenues of investigation. The tumor micro-environment of the primary and metastatic niches has also been increasingly scrutinized in recent years, and further investigation of these tumor compartments is likely to result in a better understanding of the molecular mediators of MB colonization and growth in metastatic compartments.


Assuntos
Neoplasias Cerebelares/genética , Meduloblastoma/genética , Metástase Neoplásica/genética , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Neoplasias Cerebelares/patologia , Humanos , Meduloblastoma/secundário , Metástase Neoplásica/patologia
7.
Nat Med ; 26(5): 720-731, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32341580

RESUMO

Recurrent medulloblastoma and ependymoma are universally lethal, with no approved targeted therapies and few candidates presently under clinical evaluation. Nearly all recurrent medulloblastomas and posterior fossa group A (PFA) ependymomas are located adjacent to and bathed by the cerebrospinal fluid, presenting an opportunity for locoregional therapy, bypassing the blood-brain barrier. We identify three cell-surface targets, EPHA2, HER2 and interleukin 13 receptor α2, expressed on medulloblastomas and ependymomas, but not expressed in the normal developing brain. We validate intrathecal delivery of EPHA2, HER2 and interleukin 13 receptor α2 chimeric antigen receptor T cells as an effective treatment for primary, metastatic and recurrent group 3 medulloblastoma and PFA ependymoma xenografts in mouse models. Finally, we demonstrate that administration of these chimeric antigen receptor T cells into the cerebrospinal fluid, alone or in combination with azacytidine, is a highly effective therapy for multiple metastatic mouse models of group 3 medulloblastoma and PFA ependymoma, thereby providing a rationale for clinical trials of these approaches in humans.


Assuntos
Neoplasias Encefálicas/terapia , Vacinas Anticâncer/administração & dosagem , Líquido Cefalorraquidiano/efeitos dos fármacos , Ependimoma/terapia , Imunoterapia Adotiva/métodos , Meduloblastoma/terapia , Animais , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Cerebelares/líquido cefalorraquidiano , Neoplasias Cerebelares/imunologia , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/terapia , Líquido Cefalorraquidiano/imunologia , Criança , Pré-Escolar , Sistemas de Liberação de Medicamentos/métodos , Ependimoma/líquido cefalorraquidiano , Ependimoma/imunologia , Ependimoma/patologia , Feminino , Células HEK293 , Humanos , Lactente , Injeções Intraventriculares , Masculino , Meduloblastoma/líquido cefalorraquidiano , Meduloblastoma/imunologia , Meduloblastoma/patologia , Camundongos , Metástase Neoplásica , Receptores de Antígenos Quiméricos/administração & dosagem , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Resultado do Tratamento , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
NPJ Digit Med ; 2: 28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31304375

RESUMO

Advancements in computer vision and artificial intelligence (AI) carry the potential to make significant contributions to health care, particularly in diagnostic specialties such as radiology and pathology. The impact of these technologies on physician stakeholders is the subject of significant speculation. There is however a dearth of information regarding the opinions, enthusiasm, and concerns of the pathology community at large. Here, we report results from a survey of 487 pathologist-respondents practicing in 54 countries, conducted to examine perspectives on AI implementation in clinical practice. Despite limitations, including difficulty with quantifying response bias and verifying identity of respondents to this anonymous and voluntary survey, several interesting findings were uncovered. Overall, respondents carried generally positive attitudes towards AI, with nearly 75% reporting interest or excitement in AI as a diagnostic tool to facilitate improvements in workflow efficiency and quality assurance in pathology. Importantly, even within the more optimistic cohort, a significant number of respondents endorsed concerns about AI, including the potential for job displacement and replacement. Overall, around 80% of respondents predicted the introduction of AI technology in the pathology laboratory within the coming decade. Attempts to identify statistically significant demographic characteristics (e.g., age, sex, type/place of practice) predictive of attitudes towards AI using Kolmogorov-Smirnov (KS) testing revealed several associations. Important themes which were commented on by respondents included the need for increasing efforts towards physician training and resolving medical-legal implications prior to the generalized implementation of AI in pathology.

9.
Acad Forensic Pathol ; 8(3): 555-564, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31240059

RESUMO

Chronic traumatic encephalopathy (CTE) has become a topic of considerable interest in recent years, with wide-ranging implications for athletes, military members, and other groups exposed to frequent concussive or subconcussive head trauma. The condition has been subject to intensive neuropathological characterization by various groups, with assessment methodologies and staging criteria proposed. Clinical characterization of symptoms has also been performed, but has not yet been definitively formalized. While efforts are underway to develop in vivo markers of tauopathies including CTE, these remain experimental at this time, necessitating postmortem analysis for definitive diagnosis. The putative link between development of cognitive and behavioral dysfunction and neuropathological findings of CTE may prompt requests for postmortem assessment in the forensic setting. Here, we review current concepts in CTE research, describe histopathological findings in CTE, and describe methodologies for pathological assessment of CTE which may be useful to the forensic pathologist.

10.
J Neuropathol Exp Neurol ; 77(12): 1071-1078, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30346566

RESUMO

Lethal neonatal rigidity and multifocal seizure syndrome (RMFSL) (OMIM#614498) is caused by homozygous or compound heterozygous mutation in the BRAT1 gene (OMIM#614506) on chromosome 7p22. We report a newborn female infant born to non-consanguineous Chinese parents who presented with hypertonia, dysmorphic features, progressive encephalopathy with refractory seizures, and worsening episodic apnea, leading to intubation and eventually death at 10 weeks of age. Whole exome sequencing revealed homozygous BRAT1 mutation, c.1395G>C (p.Thr465Thr), predicted to cause splice site disruption. Neuropathological assessment demonstrated microcephaly, severe neuronal loss, and background gliosis in the dorsal region of the putamen. Disruption of BRAT1 function in RMFSL has been proposed to cause dysfunction in the DNA damage response pathway and impair mitochondrial homeostasis. To our best knowledge this is the first reported case of Chinese origin. We review all published cases with BRAT1 mutation reported in the English literature and known BRAT1 functions which provide insight into the pathophysiology of the disease.


Assuntos
Povo Asiático/genética , Mutação/genética , Proteínas Nucleares/genética , Convulsões/diagnóstico por imagem , Convulsões/genética , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Evolução Fatal , Feminino , Humanos , Lactente , Recém-Nascido
13.
Methods Mol Biol ; 1210: 37-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25173159

RESUMO

The generation of xenograft models, which support the growth of human tissue in animals, forms an important part of a researcher's tool kit and enhances the ability to understand the initiation and development of cancer in vivo. Especially in the context of the brain tumor-initiating cell (BTIC), a xenograft model allows for careful characterization of BTIC roles in tumor initiation, growth, and relapse. Here, we detail a set of procedures which describe the isolation, enrichment, and intracranial injection of human BTICs from patient samples to generate xenograft models of a human brain tumor.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica , Xenoenxertos , Células-Tronco Neoplásicas/metabolismo , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Camundongos , Cultura Primária de Células , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA