Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 634: 930-939, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566637

RESUMO

Pt-Ni (111) alloy nanoparticles (NPs) and atomically dispersed Pt have been shown to be the most effective catalysts for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) as well as less expensive compared to pure Pt NPs. To meet reaction kinetic demands and minimize the Pt utilization at cathode in PEMFCs, we propose a novel electrocatalyst composed of dual single-atoms (Pt, Ni) and Pt-Ni alloy NPs dispersed on the surface of N-doped carbon (NDC); collectively, PtNiSA-NPS-NDC. The optimized PtNiSA-NPS-NDC catalyst displays excellent mass activity and durability compared to commercial Pt/C. Electrocatalytic measurements show that the PtNiSA-NPS-NDC catalyst, with a metal loading of 4.5 wt%, exhibited distinguished ORR performance (E1/2 = 0.912 V) through a 4-electron (4e-) pathway, which is higher than that of commercial 20 wt% Pt/C (E1/2 = 0.857 V). The DFT simulations indicate Pt-Ni alloy NPs and PtNiN2C4 atomic structure are the mobile active sites for ORR catalytic activity in PtNiSA-NPS-NDC. As a cathode catalyst in PEMFC, the Pt utilization efficiency in the PtNiSA-NPS-NDC catalyst is 0.033 gPt kW-1, which is 5.6 times higher than that of commercial Pt/C (0.185gPt kW-1). Therefore, the consumption of precious metals is effectively minimized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA