Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt C): 113448, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35580664

RESUMO

Alum sludge from water treatment was calcined and extracted to synthesize high quality boehmite and γ-alumina for phosphate removal. Synthesized boehmite and γ-alumina were able to remove phosphate quickly and effectively. Boehmite (hydrothermal treatment at 60 °C) showed maximum phosphate removal (adsorption) of 61 mg P/g followed by γ-alumina (50 mg P/g) and the boehmite hydrothermally treated at 120 °C (41 mg P/g). The degree of crystallinity gave more effect on phosphate adsorption of boehmite than that of γ-alumina. The lower the pH, the more phosphate adsorbed on the boehmite and γ-alumina (adsorb phosphate more than 4 times at pH 3 than at pH 11). Spectroscopic analysis (SEM-EDS and FTIR) indicates that phosphate are removed by ligand exchange, electrostatic attraction, and surface precipitation on the synthesized boehmite and γ-alumina.


Assuntos
Fósforo , Esgotos , Adsorção , Hidróxido de Alumínio , Óxido de Alumínio/química , Fosfatos , Fósforo/química
2.
Environ Res ; 196: 110877, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711322

RESUMO

Alum sludge (AS) is an abundant and ubiquitous residue generated from drinking water treatment plants. AS was thermally treated to use as an adsorbent for phosphate removal from wastewater. Organic matter in the AS was a potential competitor and can deter phosphate adsorption. Pyrolysis and drying of AS were adopted to enhance phosphate removal by eliminating organic matter and enriching Al content. Adsorption kinetics showed that phosphate removal was highest with the AS pyrolyzed at 700 °C followed by 500 °C, air-dried and oven-dried (105 °C). Adsorption kinetic modelling showed that chemisorption is the operative mechanism of phosphate removal in all the AS. Adsorption isotherms also showed that the pyrolyzed AS and air-dried AS had similar adsorption capacity of 30.83-34.53 mg P/g AS. Al dissolution was less than 2 mg/g Al in all the AS samples. COD release was significant in the dried AS, up to 8.0 mg COD/g AS, whereas the pyrolyzed AS released less than 1 mg COD/g AS. FTIR and SEM-EDS analyses of the AS after phosphate adsorption showed the formation of aluminum-phosphate complex. Overall, the pyrolysis of AS at 700 °C was most effective in removing phosphate without leaving secondary pollution.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Fosfatos , Esgotos , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA