Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Immun Ageing ; 11(1): 4, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24642138

RESUMO

BACKGROUND: Many respiratory viruses disproportionately impact the elderly. Likewise, advanced age correlated with more adverse disease outcomes following severe acute respiratory syndrome coronavirus (SARS-CoV) infection in humans. We used an aged African green monkey SARS-CoV infection model to better understand age-related mechanisms of increased susceptibility to viral respiratory infections. Nonhuman primates are critical translational models for such research given their similarities to humans in immune-ageing as well as lung structure. RESULTS: Significant age- and infection-dependent differences were observed in both systemic and mucosal immune compartments. Peripheral lymphocytes, specifically CD8 T and B cells were significantly lower in aged monkeys pre- and post- SARS-CoV infection, while neutrophil and monocyte numbers were not impacted by age or infection status. Serum proinflammatory cytokines were similar in both age groups, whereas significantly lower levels of IL-1beta, IL-18, IL-6, IL-12 and IL-15 were detected in the lungs of SARS-CoV-infected aged monkeys at either 5 or 10 days post infection. Total lung leukocyte numbers and relative frequency of CD8 T cells, B cells, macrophages and dendritic cells were greatly reduced in the aged host during SARS-CoV infection, despite high levels of chemoattractants for many of these cells in the aged lung. Dendritic cells and monocytes/macrophages showed age-dependent differences in activation and chemokine receptor profiles, while the CD8 T cell and B cell responses were significantly reduced in the aged host. In examination of viral titers, significantly higher levels of SARS-CoV were detected in the nasal swabs early, at day 1 post infection, in aged as compared to juvenile monkeys, but virus levels were only slightly higher in aged animals by day 3. Although there was a trend of higher titers in respiratory tissues at day 5 post infection, this did not reach statistical significance and virus was cleared from all animals by day 10, regardless of age. CONCLUSIONS: This study provides unique insight into how several parameters of the systemic and mucosal immune response to SARS-CoV infection are significantly modulated by age. These immune differences may contribute to deficient immune function and the observed trend of higher SARS-CoV replication in aged nonhuman primates.

2.
J Virol ; 86(8): 4234-44, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345460

RESUMO

Our knowledge regarding immune-protective and immunopathogenic events in severe acute respiratory syndrome coronavirus (SARS-CoV) infection is limited, and little is known about the dynamics of the immune response at the primary site of disease. Here, an African green monkey (AGM) model was used to elucidate immune mechanisms that facilitate viral clearance but may also contribute to persistent lung inflammation following SARS-CoV infection. During primary infection, SARS-CoV replicated in the AGM lung for up to 10 days. Interestingly, lung inflammation was more prevalent following viral clearance, as leukocyte numbers peaked at 14 days postinfection (dpi) and remained elevated at 28 dpi compared to those of mock-infected controls. Lung macrophages but not dendritic cells were rapidly activated, and both cell types had high activation marker expression at late infection time points. Lung proinflammatory cytokines were induced at 1 to 14 dpi, but most returned to baseline by 28 dpi except interleukin 12 (IL-12) and gamma interferon. In SARS-CoV homologous rechallenge studies, 11 of the 12 animals were free of replicating virus at day 5 after rechallenge. However, incidence and severity of lung inflammation was not reduced despite the limited viral replication upon rechallenge. Evaluating the role of antibodies in immune protection or potentiation revealed a progressive increase in anti-SARS-CoV antibodies in lung and serum that did not correlate temporally or spatially with enhanced viral replication. This study represents one of the first comprehensive analyses of lung immunity, including changes in leukocyte populations, lung-specific cytokines, and antibody responses following SARS-CoV rechallenge in AGMs.


Assuntos
Coronavirus/imunologia , Pneumonia/imunologia , Pneumonia/virologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Replicação Viral , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Citocinas/metabolismo , Células Dendríticas/imunologia , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Glicoproteínas de Membrana/imunologia , Monócitos/imunologia , Pneumonia/patologia , Síndrome Respiratória Aguda Grave/metabolismo , Glicoproteína da Espícula de Coronavírus , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA