Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436125

RESUMO

Paddy fields serve as significant reservoirs of soil organic carbon (SOC) and their potential for terrestrial carbon (C) sequestration is closely associated with changes in SOC pools. However, there has been a dearth of comprehensive studies quantifying changes in SOC pools following extended periods of rice cultivation across a broad geographical scale. Using 104 rice paddy sampling sites that have been in continuous cultivation since the 1980s across China, we studied the changes in topsoil (0-20 cm) labile organic C (LOC I), semi-labile organic C (LOC II), recalcitrant organic C (ROC), and total SOC. We found a substantial increase in both the content (48%) and density (39%) of total SOC within China's paddy fields between the 1980s to the 2010s. Intriguingly, the rate of increase in content and density of ROC exceeded that of LOC (I and II). Using a structural equation model, we revealed that changes in the content and density of total SOC were mainly driven by corresponding shifts in ROC, which are influenced both directly and indirectly by climatic and soil physicochemical factors; in particular temperature, precipitation, phosphorous (P) and clay content. We also showed that the δ13 CLOC were greater than δ13 CROC , independent of the rice cropping region, and that there was a significant positive correlation between δ13 CSOC and δ13 Cstraw . The δ13 CLOC and δ13 CSOC showed significantly negative correlation with soil total Si, suggesting that soil Si plays a part in the allocation of C into different SOC pools, and its turnover or stabilization. Our study underscores that the global C sequestration of the paddy fields mainly stems from the substantial increase in ROC pool.


Assuntos
Oryza , Solo , Carbono , China , Geografia
2.
Environ Sci Technol ; 58(1): 468-479, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38141044

RESUMO

Coastal wetlands contribute to the mitigation of climate change through the sequestration of "blue carbon". Microbial necromass, lignin, and glycoproteins (i.e., glomalin-related soil proteins (GRSP)), as important components of soil organic carbon (SOC), are sensitive to environmental change. However, their contributions to blue carbon formation and the underlying factors remain largely unresolved. To address this paucity of knowledge, we investigated their contributions to blue carbon formation along a salinity gradient in coastal marshes. Our results revealed decreasing contributions of microbial necromass and lignin to blue carbon as the salinity increased, while GRSP showed an opposite trend. Using random forest models, we showed that their contributions to SOC were dependent on microbial biomass and resource stoichiometry. In N-limited saline soils, contributions of microbial necromass to SOC decreased due to increased N-acquisition enzyme activity. Decreases in lignin contributions were linked to reduced mineral protection offered by short-range-ordered Fe (FeSRO). Partial least-squares path modeling (PLS-PM) further indicated that GRSP could increase microbial necromass and lignin formation by enhancing mineral protection. Our findings have implications for improving the accumulation of refractory and mineral-bound organic matter in coastal wetlands, considering the current scenario of heightened nutrient discharge and sea-level rise.


Assuntos
Carbono , Solo , Lignina , Glicoproteínas , Proteínas Fúngicas , Minerais
3.
Sci Technol Adv Mater ; 25(1): 2393568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39238510

RESUMO

Sugarcane-based products are inherently rich in elements such as silicon, carbon and nitrogen. As such, these become ideal precursors for utilization in a wide array of application fields. One of the appealing areas is to transform them into nanomaterials of high interest that can be employed in several prominent applications. Among nanomaterials, sugarcane products based on silica nanoparticles (SNPs), carbon dots (CDs), metal/metal oxide-based NPs, nanocellulose, cellulose nanofibers (CNFs), and nano biochar are becoming increasingly reported. Through manipulation of the experimental conditions and choosing suitable starting precursors and elements, it is possible to devise these nanomaterials with highly desired properties suited for specific applications. The current review presents the findings from the recent literature wherein an effort has been made to convey new development in the field of sugarcane-based products for the synthesis of the above-mentioned nanomaterials. Various nanomaterials were systematically discussed in terms of their synthesis and application perspectives. Wherever possible, a comparative analysis was carried out to highlight the potential of sugarcane products for the intended purpose as compared to other biomass-based materials. This review is expected to stand out in delivering an up-to-date survey of the literature and provide readers with necessary directions for future research.


This review focuses on sugarcane-derived nanomaterials such as silica, nano cellulose, nanofibers, nanocrystals and metal/nonmetal nanoparticles and their application in various energy and environmental fields.

4.
Glob Chang Biol ; 29(18): 5445-5459, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424182

RESUMO

To achieve long-term increases in soil organic carbon (SOC) storage, it is essential to understand the effects of carbon management strategies on SOC formation pathways, particularly through changes in microbial necromass carbon (MNC) and dissolved organic carbon (DOC). Using a 14-year field study, we demonstrate that both biochar and maize straw lifted the SOC ceiling, but through different pathways. Biochar, while raising SOC and DOC content, decreased substrate degradability by increasing carbon aromaticity. This resulted in suppressed microbial abundance and enzyme activity, which lowered soil respiration, weakened in vivo turnover and ex vivo modification for MNC production (i.e., low microbial carbon pump "efficacy"), and led to lower efficiency in decomposing MNC, ultimately resulting in the net accumulation of SOC and MNC. In contrast, straw incorporation increased the content and decreased the aromaticity of SOC and DOC. The enhanced SOC degradability and soil nutrient content, such as total nitrogen and total phosphorous, stimulated the microbial population and activity, thereby boosting soil respiration and enhancing microbial carbon pump "efficacy" for MNC production. The total C added to biochar and straw plots were estimated as 27.3-54.5 and 41.4 Mg C ha-1 , respectively. Our results demonstrated that biochar was more efficient in lifting the SOC stock via exogenous stable carbon input and MNC stabilization, although the latter showed low "efficacy". Meanwhile, straw incorporation significantly promoted net MNC accumulation but also stimulated SOC mineralization, resulting in a smaller increase in SOC content (by 50%) compared to biochar (by 53%-102%). The results address the decadal-scale effects of biochar and straw application on the formation of the stable organic carbon pool in soil, and understanding the causal mechanisms can allow field practices to maximize SOC content.


Assuntos
Carbono , Solo , Carbono/química , Solo/química , Matéria Orgânica Dissolvida , Carvão Vegetal , Microbiologia do Solo
5.
Environ Sci Technol ; 57(4): 1837-1847, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36594827

RESUMO

Biochar amendments add persistent organic carbon to soil and can stabilize rhizodeposits and existing soil organic carbon (SOC), but effects of biochar on subsoil carbon stocks have been overlooked. We quantified changes in soil inorganic carbon (SIC) and SOC to 2 m depth 10 years after biochar application to calcareous soil. The total soil carbon (i.e., existing SOC, SIC, and biochar-C) increased by 71, 182, and 210% for B30, B60, and B90, respectively. Biochar application at 30, 60, and 90 t ha-1 rates significantly increased SIC by 10, 38, and 68 t ha-1, respectively, with accumulation mainly occurring in the subsoil (below 1 m). This huge increase of SIC (mainly CaCO3) is ∼100 times larger than the inorganic carbon present in the added biochar (0.3, 0.6, or 0.9 t ha-1). The benzene polycarboxylic acid method showed that the biochar-amended soil contained more black carbon particles (6.8 times higher than control soil) in the depth of 1.4-1.6 m, which provided the direct quantitative evidence for biochar migration into subsoil after a decade. Spectral and energy spectrum analysis also showed an obvious biochar structure in the biochar-amended subsoil, accompanied by a Ca/Mg carbonate cluster, which provided further evidence for downward migration of biochar after a decade. To explain SIC accumulation in subsoil with biochar amendment, the interacting mechanisms are proposed: (1) biochar amendment significantly increases subsoil pH (0.3-0.5 units) 10 years after biochar application, thus forming a favorable pH environment in the subsoil to precipitate HCO3-; and (2) the transported biochar in subsoil can act as nuclei to precipitate SIC. Biochar amendment enhanced SIC by up to 80%; thus, the effects on carbon stocks in subsoil must be understood to inform strategies for carbon dioxide removal through biochar application. Our study provided critical knowledge on the impact of biochar application to topsoil on carbon stocks in subsoil in the long term.


Assuntos
Carbono , Solo , Solo/química , Sequestro de Carbono , Carvão Vegetal
6.
Glob Chang Biol ; 28(20): 6065-6085, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35771205

RESUMO

Soil organic carbon (SOC) in coastal wetlands, also known as "blue C," is an essential component of the global C cycles. To gain a detailed insight into blue C storage and controlling factors, we studied 142 sites across ca. 5000 km of coastal wetlands, covering temperate, subtropical, and tropical climates in China. The wetlands represented six vegetation types (Phragmites australis, mixed of P. australis and Suaeda, single Suaeda, Spartina alterniflora, mangrove [Kandelia obovata and Avicennia marina], tidal flat) and three vegetation types invaded by S. alterniflora (P. australis, K. obovata, A. marina). Our results revealed large spatial heterogeneity in SOC density of the top 1-m ranging 40-200 Mg C ha-1 , with higher values in mid-latitude regions (25-30° N) compared with those in both low- (20°N) and high-latitude (38-40°N) regions. Vegetation type influenced SOC density, with P. australis and S. alterniflora having the largest SOC density, followed by mangrove, mixed P. australis and Suaeda, single Suaeda and tidal flat. SOC density increased by 6.25 Mg ha-1 following S. alterniflora invasion into P. australis community but decreased by 28.56 and 8.17 Mg ha-1 following invasion into K. obovata and A. marina communities. Based on field measurements and published literature, we calculated a total inventory of 57 × 106 Mg C in the top 1-m soil across China's coastal wetlands. Edaphic variables controlled SOC content, with soil chemical properties explaining the largest variance in SOC content. Climate did not control SOC content but had a strong interactive effect with edaphic variables. Plant biomass and quality traits were a minor contributor in regulating SOC content, highlighting the importance of quantity and quality of OC inputs and the balance between production and degradation within the coastal wetlands. These findings provide new insights into blue C stabilization mechanisms and sequestration capacity in coastal wetlands.


Assuntos
Carbono , Áreas Alagadas , Carbono/análise , China , Espécies Introduzidas , Poaceae/fisiologia , Solo/química
7.
Glob Chang Biol ; 28(8): 2736-2750, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35060227

RESUMO

Phytolith carbon (C) sequestration plays a key role in mitigating global climate change at a centennial to millennial time scale. However, previous estimates of phytolith-occluded carbon (PhytOC) storage and potential in China's grasslands have large uncertainties mainly due to multiple data sources. This contributes to the uncertainty in predicting long-term C sequestration in terrestrial ecosystems using Earth System Models. In this study, we carried out an intensive field investigation (79 sites, 237 soil profiles [0-100 cm], and 61 vegetation assessments) to quantify PhytOC storage in China's grasslands and to better explore the biogeographical patterns and influencing factors. Generally, PhytOC production flux and soil PhytOC density in both the Tibetan Plateau and the Inner Mongolian Plateau had a decreasing trend from the Northeast to the Southwest. The aboveground PhytOC production rate in China's grassland was 0.48 × 106 t CO2 a-1 , and the soil PhytOC storage was 383 × 106 t CO2 . About 45% of soil PhytOC was stored in the deep soil layers (50-100 cm), highlighting the importance of deep soil layers for C stock assessments. Importantly, the Tibetan Plateau had the greatest contribution (more than 70%) to the PhytOC storage in China's grasslands. The results of multiple regression analysis indicated that altitude and soil texture significantly influenced the spatial distribution of soil PhytOC, explaining 78.1% of the total variation. Soil phytolith turnover time in China's grasslands was mainly controlled by climatic conditions, with the turnover time on the Tibetan Plateau being significantly longer than that on the Inner Mongolian Plateau. Our results offer more accurate estimates of the potential for phytolith C sequestration from ecological restoration projects in degraded grassland ecosystems. These estimates are essential to parameterizing and validating global C models.


Assuntos
Sequestro de Carbono , Pradaria , Carbono/análise , Dióxido de Carbono/análise , China , Ecossistema , Solo
8.
Glob Chang Biol ; 27(8): 1627-1644, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33432697

RESUMO

Coastal wetlands are among the most productive ecosystems and store large amounts of organic carbon (C)-the so termed "blue carbon." However, wetlands in the tropics and subtropics have been invaded by smooth cordgrass (Spartina alterniflora) affecting storage of blue C. To understand how S. alterniflora affects soil organic carbon (SOC) stocks, sources, stability, and their spatial distribution, we sampled soils along a 2500 km coastal transect encompassing tropical to subtropical climate zones. This included 216 samplings within three coastal wetland types: a marsh (Phragmites australis) and two mangroves (Kandelia candel and Avicennia marina). Using δ13 C, C:nitrogen (N) ratios, and lignin biomarker composition, we traced changes in the sources, stability, and storage of SOC in response to S. alterniflora invasion. The contribution of S. alterniflora-derived C up to 40 cm accounts for 5.6%, 23%, and 12% in the P. australis, K. candel, and A. marina communities, respectively, with a corresponding change in SOC storage of +3.5, -14, and -3.9 t C ha-1 . SOC storage did not follow the trend in aboveground biomass from the native to invasive species, or with vegetation types and invasion duration (7-15 years). SOC storage decreased with increasing mean annual precipitation (1000-1900 mm) and temperature (15.3-23.4℃). Edaphic variables in P. australis marshes remained stable after S. alterniflora invasion, and hence, their effects on SOC content were absent. In mangrove wetlands, however, electrical conductivity, total N and phosphorus, pH, and active silicon were the main factors controlling SOC stocks. Mangrove wetlands were most strongly impacted by S. alterniflora invasion and efforts are needed to focus on restoring native vegetation. By understanding the mechanisms and consequences of invasion by S. alterniflora, changes in blue C sequestration can be predicted to optimize storage can be developed.


Assuntos
Carbono , Áreas Alagadas , Carbono/análise , China , Ecossistema , Espécies Introduzidas , Poaceae , Solo
9.
J Environ Manage ; 228: 429-440, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243078

RESUMO

Application of biochar to soil can play a significant role in the alteration of nutrients dynamics, soil contaminants as well as microbial functions. Therefore, strategic biochar application to soil may provide agronomic, environmental and economic benefits. Key environmental outcomes may include reduced availability of toxic metals and organic pollutants, reduced soil N losses and longer-term storage of carbon in soil. The use of biochar can certainly address key soil agronomic constraints to crop production including Al toxicity, low soil pH and may improve nutrient use efficiency. Biochar application has also demerits to soil properties and attention should be paid when using a specific biochar for a specific soil property improvement. This review provides a concise assessment and addresses impacts of biochar on soil properties.


Assuntos
Carvão Vegetal/química , Solo/química , Agricultura , Animais , Carbono/química , Poluição Ambiental , Poluentes do Solo/química
10.
Sci Total Environ ; 912: 169544, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38141972

RESUMO

Environmental disturbances such as drought can impact soil health and the resistance (ability to withstand environmental stress) and resilience (ability to recover functional and structural integrity after stress) of soil microbial functional activities. A paucity of information exists on the impact of drought on soil microbiome and how soil biological systems respond to and demonstrate resilience to drought stress. To address this, we conducted a systematic review and meta-analysis (using only laboratory studies) to assess the response of soil microbial biomass and respiration to drought stress across agriculture, forest, and grassland ecosystems. The meta-analysis revealed an overall negative response of microbial biomass in resistance (-31.6 %) and resilience (-0.3 %) to drought, suggesting a decrease in soil microbial biomass content. Soil microbial respiration also showed a negative response in resistance to drought stress indicating a decrease in soil microbial respiration in agriculture (-17.5 %), forest (-64.0 %), and grassland (-65.5 %) ecosystems. However, it showed a positive response in resilience to drought, suggesting an effective recovery in microbial respiration post-drought. Soil organic carbon (SOC), clay content, and pH were the main regulating factors of the responses of soil microbial biomass and respiration to drought. In agriculture ecosystem, soil pH was primarily correlated with soil microbial respiration resistance and resilience to drought, potentially influenced by frequent land preparation and fertilizer applications, while in forest ecosystem SOC, clay content, and pH significantly impacted microbial biomass and respiration resistance and resilience. In grassland ecosystem, SOC was strongly associated with biomass resilience to drought. The impact of drought stress on soil microbiome showed different patterns in natural and agriculture ecosystems, and the magnitude of microbial functional responses regulated by soil intrinsic properties. This study highlighted the importance of understanding the role of soil properties in shaping microbial responses to drought stress for better ecosystem management.


Assuntos
Microbiota , Resiliência Psicológica , Ecossistema , Solo/química , Secas , Argila , Carbono , Microbiologia do Solo , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA