RESUMO
Polysomnography (PSG) is necessary for the accurate estimation of total sleep time (TST) and the calculation of the apnea-hypopnea index (AHI). In type III home sleep apnea testing (HSAT), TST is overestimated because of the lack of electrophysiological sleep recordings. The aim of this study was to evaluate the accuracy and reliability of a novel automated sleep/wake scoring algorithm combining a single electroencephalogram (EEG) channel with actimetry and HSAT signals. The study included 160 patients investigated by PSG for suspected obstructive sleep apnea (OSA). Each PSG was recorded and scored manually using American Academy of Sleep Medicine (AASM) rules. The automatic sleep/wake-scoring algorithm was based on a single-channel EEG (FP2-A1) and the variability analysis of HSAT signals (airflow, snoring, actimetry, light and respiratory inductive plethysmography). Optimal detection thresholds were derived for each signal using a training set. Automatic and manual scorings were then compared epoch by epoch considering two states (sleep and wake). Cohen's kappa coefficient between the manual scoring and the proposed automatic algorithm was substantial, 0.74 ± 0.18, in separating wakefulness and sleep. The sensitivity, specificity and the positive and negative predictive values for the detection of wakefulness were 76.51% ± 21.67%, 95.48% ± 5.27%, 81.84% ± 15.42% and 93.85% ± 6.23% respectively. Compared with HSAT signals alone, AHI increased by 22.12% and 27 patients changed categories of OSA severity with the automatic sleep/wake-scoring algorithm. Automatic sleep/wake detection using a single-channel EEG combined with HSAT signals was a reliable method for TST estimation and improved AHI calculation compared with HSAT.
Assuntos
Eletroencefalografia/métodos , Polissonografia/métodos , Apneia Obstrutiva do Sono/diagnóstico , Sono/fisiologia , Vigília/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Apneia Obstrutiva do Sono/fisiopatologiaRESUMO
Type III sleep studies record cardio-respiratory channels only. Compared with polysomnography, which also records electrophysiological channels, they present many advantages: they are less expensive, less time-consuming, and more likely to be performed at home. However, their accuracy is limited by missing sleep information. That is why many studies present specific cardio-respiratory parameters to assess the causal effects of sleep stages upon cardiac or respiratory activities. For this paper, we gathered many parameters proposed in literature, leading to 1,111 features. The pulse oximeter, the PneaVoX sensor (recording tracheal sounds), respiratory inductance plethysmography belts, the nasal cannula and the actimeter provided the 112 worthiest ones for automatic sleep scoring. Then, a 3-step model was implemented: classification with a multi-layer perceptron, sleep transition rules corrections (from the AASM guidelines), and sequence corrections using a Viterbi hidden Markov model. The whole process was trained and tested using 300 and 100 independent recordings provided from patients suspected of having sleep breathing disorders. Results indicated that the system achieves substantial agreement with manual scoring for classifications into 2 stages (wake vs. sleep: mean Cohen's Kappa κ of 0.63 and accuracy rate Acc of 87.8%) and 3 stages (wake vs. R stage vs. NREM stage: mean κ of 0.60 and Acc of 78.5%). It indicates that the method could provide information to help specialists while diagnosing sleep. The presented model had promising results and may enhance clinical diagnosis.