Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Blood ; 143(12): 1193-1197, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38237140

RESUMO

ABSTRACT: Many patients with antiphospholipid syndrome had decreased ectonucleotidase activity on neutrophils and platelets, which enabled extracellular nucleotides to trigger neutrophil-platelet aggregates. This phenotype was replicated by treating healthy neutrophils and platelets with patient-derived antiphospholipid antibodies or ectonucleotidase inhibitors.


Assuntos
Síndrome Antifosfolipídica , Humanos , Neutrófilos , Anticorpos Antifosfolipídeos , Plaquetas
2.
Brain ; 145(9): 3108-3130, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35512359

RESUMO

Aberrant self-assembly and toxicity of wild-type and mutant superoxide dismutase 1 (SOD1) has been widely examined in silico, in vitro and in transgenic animal models of amyotrophic lateral sclerosis. Detailed examination of the protein in disease-affected tissues from amyotrophic lateral sclerosis patients, however, remains scarce. We used histological, biochemical and analytical techniques to profile alterations to SOD1 protein deposition, subcellular localization, maturation and post-translational modification in post-mortem spinal cord tissues from amyotrophic lateral sclerosis cases and controls. Tissues were dissected into ventral and dorsal spinal cord grey matter to assess the specificity of alterations within regions of motor neuron degeneration. We provide evidence of the mislocalization and accumulation of structurally disordered, immature SOD1 protein conformers in spinal cord motor neurons of SOD1-linked and non-SOD1-linked familial amyotrophic lateral sclerosis cases, and sporadic amyotrophic lateral sclerosis cases, compared with control motor neurons. These changes were collectively associated with instability and mismetallation of enzymatically active SOD1 dimers, as well as alterations to SOD1 post-translational modifications and molecular chaperones governing SOD1 maturation. Atypical changes to SOD1 protein were largely restricted to regions of neurodegeneration in amyotrophic lateral sclerosis cases, and clearly differentiated all forms of amyotrophic lateral sclerosis from controls. Substantial heterogeneity in the presence of these changes was also observed between amyotrophic lateral sclerosis cases. Our data demonstrate that varying forms of SOD1 proteinopathy are a common feature of all forms of amyotrophic lateral sclerosis, and support the presence of one or more convergent biochemical pathways leading to SOD1 proteinopathy in amyotrophic lateral sclerosis. Most of these alterations are specific to regions of neurodegeneration, and may therefore constitute valid targets for therapeutic development.


Assuntos
Esclerose Lateral Amiotrófica , Processamento de Proteína Pós-Traducional , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/genética , Humanos , Mutação , Medula Espinal/patologia , Superóxido Dismutase-1/genética
3.
Hum Mol Genet ; 27(3): 463-474, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194538

RESUMO

FUS (fused in sarcoma) mislocalization and cytoplasmic aggregation are hallmark pathologies in FUS-related amyotrophic lateral sclerosis and frontotemporal dementia. Many of the mechanistic hypotheses have focused on a loss of nuclear function in the FUS-opathies, implicating dysregulated RNA transcription and splicing in driving neurodegeneration. Recent studies describe an additional somato-dendritic localization for FUS in the cerebral cortex implying a regulatory role in mRNA transport and local translation at the synapse. Here, we report that FUS is also abundant at the pre-synaptic terminal of the neuromuscular junction (NMJ), suggesting an important function for this protein at peripheral synapses. We have previously reported dose and age-dependent motor neuron degeneration in transgenic mice overexpressing human wild-type FUS, resulting in a motor phenotype detected by ∼28 days and death by ∼100 days. Now, we report the earliest structural events using electron microscopy and quantitative immunohistochemistry. Mitochondrial abnormalities in the pre-synaptic motor nerve terminals are detected at postnatal day 6, which are more pronounced at P15 and accompanied by a loss of synaptic vesicles and synaptophysin protein coupled with NMJs of a smaller size at a time when there is no detectable motor neuron loss. These changes occur in the presence of abundant FUS and support a peripheral toxic gain of function. This appearance is typical of a 'dying-back' axonopathy, with the earliest manifestation being mitochondrial disruption. These findings support our hypothesis that FUS has an important function at the NMJ, and challenge the 'loss of nuclear function' hypothesis for disease pathogenesis in the FUS-opathies.


Assuntos
Junção Neuromuscular/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores , Proteína FUS de Ligação a RNA/genética , Sinapses/metabolismo , Sinaptofisina/metabolismo
4.
Acta Neuropathol ; 134(1): 113-127, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28527045

RESUMO

Neuronal loss in numerous neurodegenerative disorders has been linked to protein aggregation and oxidative stress. Emerging data regarding overlapping proteinopathy in traditionally distinct neurodegenerative diseases suggest that disease-modifying treatments targeting these pathological features may exhibit efficacy across multiple disorders. Here, we describe proteinopathy distinct from classic synucleinopathy, predominantly comprised of the anti-oxidant enzyme superoxide dismutase-1 (SOD1), in the Parkinson's disease brain. Significant expression of this pathology closely reflected the regional pattern of neuronal loss. The protein composition and non-amyloid macrostructure of these novel aggregates closely resembles that of neurotoxic SOD1 deposits in SOD1-associated familial amyotrophic lateral sclerosis (fALS). Consistent with the hypothesis that deposition of protein aggregates in neurodegenerative disorders reflects upstream dysfunction, we demonstrated that SOD1 in the Parkinson's disease brain exhibits evidence of misfolding and metal deficiency, similar to that seen in mutant SOD1 in fALS. Our data suggest common mechanisms of toxic SOD1 aggregation in both disorders and a potential role for SOD1 dysfunction in neuronal loss in the Parkinson's disease brain. This shared restricted proteinopathy highlights the potential translation of therapeutic approaches targeting SOD1 toxicity, already in clinical trials for ALS, into disease-modifying treatments for Parkinson's disease.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Encéfalo/patologia , Doença de Parkinson/patologia , Superóxido Dismutase-1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/enzimologia , Encéfalo/enzimologia , Contagem de Células , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Corpos de Lewy/enzimologia , Corpos de Lewy/patologia , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Neurônios/enzimologia , Neurônios/patologia , Doença de Parkinson/enzimologia , Agregação Patológica de Proteínas/enzimologia , Agregação Patológica de Proteínas/patologia , Dobramento de Proteína , Medula Espinal/enzimologia , Medula Espinal/patologia
5.
Brain ; 139(Pt 5): 1417-32, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26936937

RESUMO

Detergent-resistant, ubiquitinated and hyperphosphorylated Tar DNA binding protein 43 (TDP-43, encoded by TARDBP) neuronal cytoplasmic inclusions are the pathological hallmark in ∼95% of amyotrophic lateral sclerosis and ∼60% of frontotemporal lobar degeneration cases. We sought to explore the role for the heat shock response in the clearance of insoluble TDP-43 in a cellular model of disease and to validate our findings in transgenic mice and human amyotrophic lateral sclerosis tissues. The heat shock response is a stress-responsive protective mechanism regulated by the transcription factor heat shock factor 1 (HSF1), which increases the expression of chaperones that refold damaged misfolded proteins or facilitate their degradation. Here we show that manipulation of the heat shock response by expression of dominant active HSF1 results in a dramatic reduction of insoluble and hyperphosphorylated TDP-43 that enhances cell survival, whereas expression of dominant negative HSF1 leads to enhanced TDP-43 aggregation and hyperphosphorylation. To determine which chaperones were mediating TDP-43 clearance we over-expressed a range of heat shock proteins (HSPs) and identified DNAJB2a (encoded by DNAJB2, and also known as HSJ1a) as a potent anti-aggregation chaperone for TDP-43. DNAJB2a has a J domain, allowing it to interact with HSP70, and ubiquitin interacting motifs, which enable it to engage the degradation of its client proteins. Using functionally deleted DNAJB2a constructs we demonstrated that TDP-43 clearance was J domain-dependent and was not affected by ubiquitin interacting motif deletion or proteasome inhibition. This indicates that TDP-43 is maintained in a soluble state by DNAJB2a, leaving the total levels of TDP-43 unchanged. Additionally, we have demonstrated that the levels of HSF1 and heat shock proteins are significantly reduced in affected neuronal tissues from a TDP-43 transgenic mouse model of amyotrophic lateral sclerosis and patients with sporadic amyotrophic lateral sclerosis. This implies that the HSF1-mediated DNAJB2a/HSP70 heat shock response pathway is compromised in amyotrophic lateral sclerosis. Defective refolding of TDP-43 is predicted to aggravate the TDP-43 proteinopathy. The finding that the pathological accumulation of insoluble TDP-43 can be reduced by the activation of HSF1/HSP pathways presents an exciting opportunity for the development of novel therapeutics.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Choque Térmico/metabolismo , Fatores de Transcrição/fisiologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/fisiologia , Fatores de Transcrição de Choque Térmico , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Fosforilação , Fatores de Transcrição/biossíntese , Ubiquitina/metabolismo
6.
J Cell Sci ; 127(Pt 6): 1263-78, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24424030

RESUMO

TAR DNA-binding protein (TDP-43, also known as TARDBP) is the major pathological protein in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Large TDP-43 aggregates that are decorated with degradation adaptor proteins are seen in the cytoplasm of remaining neurons in ALS and FTD patients post mortem. TDP-43 accumulation and ALS-linked mutations within degradation pathways implicate failed TDP-43 clearance as a primary disease mechanism. Here, we report the differing roles of the ubiquitin proteasome system (UPS) and autophagy in the clearance of TDP-43. We have investigated the effects of inhibitors of the UPS and autophagy on the degradation, localisation and mobility of soluble and insoluble TDP-43. We find that soluble TDP-43 is degraded primarily by the UPS, whereas the clearance of aggregated TDP-43 requires autophagy. Cellular macroaggregates, which recapitulate many of the pathological features of the aggregates in patients, are reversible when both the UPS and autophagy are functional. Their clearance involves the autophagic removal of oligomeric TDP-43. We speculate that, in addition to an age-related decline in pathway activity, a second hit in either the UPS or the autophagy pathway drives the accumulation of TDP-43 in ALS and FTD. Therapies for clearing excess TDP-43 should therefore target a combination of these pathways.


Assuntos
Autofagia , Proteínas de Ligação a DNA/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Ubiquitinação , Linhagem Celular Tumoral , Células HEK293 , Humanos , Agregados Proteicos , Proteólise , Proteinopatias TDP-43/metabolismo
7.
Hum Mol Genet ; 22(13): 2676-88, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23474818

RESUMO

Mutations in the gene encoding Fused in Sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. FUS is a predominantly nuclear DNA- and RNA-binding protein that is involved in RNA processing. Large FUS-immunoreactive inclusions fill the perikaryon of surviving motor neurons of ALS patients carrying mutations at post-mortem. This sequestration of FUS is predicted to disrupt RNA processing and initiate neurodegeneration. Here, we demonstrate that C-terminal ALS mutations disrupt the nuclear localizing signal (NLS) of FUS resulting in cytoplasmic accumulation in transfected cells and patient fibroblasts. FUS mislocalization is rescued by the addition of the wild-type FUS NLS to mutant proteins. We also show that oxidative stress recruits mutant FUS to cytoplasmic stress granules where it is able to bind and sequester wild-type FUS. While FUS interacts with itself directly by protein-protein interaction, the recruitment of FUS to stress granules and interaction with PABP are RNA dependent. These findings support a two-hit hypothesis, whereby cytoplasmic mislocalization of FUS protein, followed by cellular stress, contributes to the formation of cytoplasmic aggregates that may sequester FUS, disrupt RNA processing and initiate motor neuron degeneration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Nucléolo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Estresse Fisiológico , Substituição de Aminoácidos , Animais , Linhagem Celular , Humanos , Neurônios Motores/metabolismo , Mutação , Sinais de Localização Nuclear , Ligação Proteica , Transporte Proteico , Ratos
8.
Acta Neuropathol ; 125(2): 273-88, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22961620

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are relentlessly progressive neurodegenerative disorders with overlapping clinical, genetic and pathological features. Cytoplasmic inclusions of fused in sarcoma (FUS) are the hallmark of several forms of FTLD and ALS patients with mutations in the FUS gene. FUS is a multifunctional, predominantly nuclear, DNA and RNA binding protein. Here, we report that transgenic mice overexpressing wild-type human FUS develop an aggressive phenotype with an early onset tremor followed by progressive hind limb paralysis and death by 12 weeks in homozygous animals. Large motor neurons were lost from the spinal cord accompanied by neurophysiological evidence of denervation and focal muscle atrophy. Surviving motor neurons in the spinal cord had greatly increased cytoplasmic expression of FUS, with globular and skein-like FUS-positive and ubiquitin-negative inclusions associated with astroglial and microglial reactivity. Cytoplasmic FUS inclusions were also detected in the brain of transgenic mice without apparent neuronal loss and little astroglial or microglial activation. Hemizygous FUS overexpressing mice showed no evidence of a motor phenotype or pathology. These findings recapitulate several pathological features seen in human ALS and FTLD patients, and suggest that overexpression of wild-type FUS in vulnerable neurons may be one of the root causes of disease. Furthermore, these mice will provide a new model to study disease mechanism, and test therapies.


Assuntos
Envelhecimento/fisiologia , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Proteína FUS de Ligação a RNA/fisiologia , Animais , Western Blotting , Sobrevivência Celular , Citoplasma/metabolismo , Dosagem de Genes , Regulação da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Corpos de Inclusão/patologia , Contração Isométrica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Paralisia/genética , Paralisia/patologia , Proteína FUS de Ligação a RNA/genética , Medula Espinal/patologia
9.
Proc Natl Acad Sci U S A ; 107(16): 7556-61, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368421

RESUMO

We report a unique mutation in the D-amino acid oxidase gene (R199W DAO) associated with classical adult onset familial amyotrophic lateral sclerosis (FALS) in a three generational FALS kindred, after candidate gene screening in a 14.52 cM region on chromosome 12q22-23 linked to disease. Neuronal cell lines expressing R199W DAO showed decreased viability and increased ubiquitinated aggregates compared with cells expressing the wild-type protein. Similarly, lentiviral-mediated expression of R199W DAO in primary motor neuron cultures caused increased TUNEL labeling. This effect was also observed when motor neurons were cocultured on transduced astrocytes expressing R199W, indicating that the motor neuron cell death induced by this mutation is mediated by both cell autonomous and noncell autonomous processes. DAO controls the level of D-serine, which accumulates in the spinal cord in cases of sporadic ALS and in a mouse model of ALS, indicating that this abnormality may represent a fundamental component of ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/fisiologia , Mutação , Animais , Apoptose , Células COS , Linhagem Celular , Chlorocebus aethiops , Feminino , Ligação Genética , Masculino , Camundongos , Repetições de Microssatélites , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Ratos
10.
Neuropathology ; 32(5): 505-14, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22181065

RESUMO

The transactive response DNA binding protein (TDP-43) proteinopathies describe a clinico-pathological spectrum of multi-system neurodegeneration that spans motor neuron disease/amyotrophic lateral sclerosis (MND/ALS) and frontotemporal lobar degeneration (FTLD). We have identified four male patients who presented with the clinical features of a pure MND/ALS phenotype (without dementia) but who had distinctive cortical and cerebellar pathology that was different from other TDP-43 proteinopathies. All patients initially presented with weakness of limbs and respiratory muscles and had a family history of MND/ALS. None had clinically identified cognitive decline or dementia during life and they died between 11 and 32 months after symptom onset. Neuropathological investigation revealed lower motor neuron involvement with TDP-43-positive inclusions typical of MND/ALS. In contrast, the cerebral pathology was atypical, with abundant star-shaped p62-immunoreactive neuronal cytoplasmic inclusions in the cerebral cortex, basal ganglia and hippocampus, while TDP-43-positive inclusions were sparse. This pattern was also seen in the cerebellum where p62-positive, TDP-43-negative inclusions were frequent in granular cells. Western blots of cortical lysates, in contrast to those of sporadic MND/ALS and FTLD-TDP, showed high p62 levels and low TDP-43 levels with no high molecular weight smearing. MND/ALS-associated SOD1, FUS and TARDBP gene mutations were excluded; however, further investigations revealed that all four of the cases did show a repeat expansion of C9orf72, the recently reported cause of chromosome 9-linked MND/ALS and FTLD. We conclude that these chromosome 9-linked MND/ALS cases represent a pathological sub-group with abundant p62 pathology in the cerebral cortex, hippocampus and cerebellum but with no significant associated cognitive decline.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/psicologia , Cerebelo/patologia , Córtex Cerebral/patologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Proteínas de Ligação a DNA/genética , Hipocampo/patologia , Corpos de Inclusão/patologia , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/psicologia , Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Idade de Início , Western Blotting , Encéfalo/patologia , Proteína C9orf72 , DNA/genética , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Medula Espinal/patologia , Bancos de Tecidos , Expansão das Repetições de Trinucleotídeos
11.
Acta Neuropathol Commun ; 10(1): 122, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008843

RESUMO

Multiple neurotoxic proteinopathies co-exist within vulnerable neuronal populations in all major neurodegenerative diseases. Interactions between these pathologies may modulate disease progression, suggesting they may constitute targets for disease-modifying treatments aiming to slow or halt neurodegeneration. Pairwise interactions between superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43) and ubiquitin-binding protein 62/sequestosome 1 (p62) proteinopathies have been reported in multiple transgenic cellular and animal models of amyotrophic lateral sclerosis (ALS), however corresponding examination of these relationships in patient tissues is lacking. Further, the coalescence of all three proteinopathies has not been studied in vitro or in vivo to date. These data are essential to guide therapeutic development and enhance the translation of relevant therapies into the clinic. Our group recently profiled SOD1 proteinopathy in post-mortem spinal cord tissues from familial and sporadic ALS cases, demonstrating an abundance of structurally-disordered (dis)SOD1 conformers which become mislocalized within these vulnerable neurons compared with those of aged controls. To explore any relationships between this, and other, ALS-linked proteinopathies, we profiled TDP-43 and p62 within spinal cord motor neurons of the same post-mortem tissue cohort using multiplexed immunofluorescence and immunohistochemistry. We identified distinct patterns of SOD1, TDP43 and p62 co-deposition and subcellular mislocalization between motor neurons of familial and sporadic ALS cases, which we primarily attribute to SOD1 gene status. Our data demonstrate co-deposition of p62 with mutant and wild-type disSOD1 and phosphorylated TDP-43 in familial and sporadic ALS spinal cord motor neurons, consistent with attempts by p62 to mitigate SOD1 and TDP-43 deposition. Wild-type SOD1 and TDP-43 co-deposition was also frequently observed in ALS cases lacking SOD1 mutations. Finally, alterations to the subcellular localization of the three proteins were tightly correlated, suggesting close relationships between the regulatory mechanisms governing the subcellular compartmentalization of these proteins. Our study is the first to profile spatial relationships between SOD1, TDP-43 and p62 pathologies in post-mortem spinal cord motor neurons of ALS patients, previously only studied in vitro. Our findings suggest interactions between these three key ALS-linked proteins are likely to modulate the formation of their respective proteinopathies, and perhaps the rate of motor neuron degeneration, in ALS patients.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Neurônios Motores/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
12.
Acta Neuropathol ; 121(4): 519-27, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21360076

RESUMO

Optineurin (OPTN) is a multifunctional protein involved in vesicular trafficking, signal transduction and gene expression. OPTN mutations were described in eight Japanese patients with familial and sporadic amyotrophic lateral sclerosis (FALS, SALS). OPTN-positive inclusions co-localising with TDP-43 were described in SALS and in FALS with SOD-1 mutations, potentially linking two pathologically distinct pathways of motor neuron degeneration. We have explored the abundance of OPTN inclusions using a range of antibodies in postmortem tissues from 138 cases and controls including sporadic and familial ALS, frontotemporal lobar degeneration (FTLD) and a wide range of neurodegenerative proteinopathies. OPTN-positive inclusions were uncommon and detected in only 11/32 (34%) of TDP-43-positive SALS spinal cord and 5/15 (33%) of FTLD-TDP. Western blot of lysates from FTLD-TDP frontal cortex and TDP-43-positive SALS spinal cord revealed decreased levels of OPTN protein compared to controls (p < 0.05), however, this correlated with decreased neuronal numbers in the brain. Large OPTN inclusions were not detected in FALS with SOD-1 and FUS mutation, respectively, or in FTLD-FUS cases. OPTN-positive inclusions were identified in a few Alzheimer's disease (AD) cases but did not co-localise with tau and TDP-43. Occasional striatal neurons contained granular cytoplasmic OPTN immunopositivity in Huntington's disease (HD) but were absent in spinocerebellar ataxia type 3. No OPTN inclusions were detected in FTLD-tau and α-synucleinopathy. We conclude that OPTN inclusions are relatively rare and largely restricted to a minority of TDP-43 positive ALS and FTLD-TDP cases. Our results do not support the proposition that OPTN inclusions play a central role in the pathogenesis of ALS, FTLD or any other neurodegenerative disorder.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Encéfalo/patologia , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/patologia , Neurônios/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ciclo Celular , Feminino , Agonistas dos Receptores Histamínicos/metabolismo , Humanos , Indóis , Masculino , Proteínas de Membrana Transportadoras , Pessoa de Meia-Idade , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Fator de Transcrição TFIIIA/genética , Tubulina (Proteína)/metabolismo
13.
PLoS Genet ; 4(9): e1000193, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18802454

RESUMO

The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Mutação de Sentido Incorreto , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Esclerose Lateral Amiotrófica/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Linhagem
14.
Sci Rep ; 11(1): 13613, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193962

RESUMO

Aberrantly expressed fused in sarcoma (FUS) is a hallmark of FUS-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Wildtype FUS localises to synapses and interacts with mitochondrial proteins while mutations have been shown to cause to pathological changes affecting mitochondria, synapses and the neuromuscular junction (NMJ). This indicates a crucial physiological role for FUS in regulating synaptic and mitochondrial function that is currently poorly understood. In this paper we provide evidence that mislocalised cytoplasmic FUS causes mitochondrial and synaptic changes and that FUS plays a vital role in maintaining neuronal health in vitro and in vivo. Overexpressing mutant FUS altered synaptic numbers and neuronal complexity in both primary neurons and zebrafish models. The degree to which FUS was mislocalised led to differences in the synaptic changes which was mirrored by changes in mitochondrial numbers and transport. Furthermore, we showed that FUS co-localises with the mitochondrial tethering protein Syntaphilin (SNPH), and that mutations in FUS affect this relationship. Finally, we demonstrated mutant FUS led to changes in global protein translation. This localisation between FUS and SNPH could explain the synaptic and mitochondrial defects observed leading to global protein translation defects. Importantly, our results support the 'gain-of-function' hypothesis for disease pathogenesis in FUS-related ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Sinapses/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Proteínas de Transporte/genética , Mitocôndrias/genética , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/genética , Proteína FUS de Ligação a RNA/genética , Ratos , Sinapses/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
Neurobiol Aging ; 106: 351.e1-351.e6, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34272080

RESUMO

Loss of function (LoF) mutations in Optineurin can cause recessive amyotrophic lateral sclerosis (ALS) with some heterozygous LoF mutations associated with dominant ALS. The molecular mechanisms underlying the variable inheritance pattern associated with OPTN mutations have remained elusive. We identified that affected members of a consanguineous Middle Eastern ALS kindred possessed a novel homozygous p.S174X OPTN mutation. Analysis of these primary fibroblast lines from family members identified that the p.S174X mutation reduces OPTN mRNA expression in an allele-dependent fashion by nonsense mediated decay. Western blotting correlated a reduced expression in heterozygote carriers but a complete absence of OPTN protein in the homozygous carrier. This data suggests that the p.S174X truncation mutation causes recessive ALS through LoF. However, functional analysis detected a significant increase in mitophagy markers TOM20 and COXIV, and higher rates of mitochondrial respiration and ATP levels in heterozygous carriers only. This suggests that heterozygous LoF OPTN mutations may not be causative in a Mendelian manner but may potentially behave as contributory ALS risk factors.


Assuntos
Alelos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ciclo Celular/genética , Genes Recessivos/genética , Estudos de Associação Genética/métodos , Mutação com Perda de Função/genética , Proteínas de Membrana Transportadoras/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Idoso , Idoso de 80 Anos ou mais , Consanguinidade , Feminino , Expressão Gênica/genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Oriente Médio , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco
16.
Int J Biochem Cell Biol ; 110: 149-153, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30904737

RESUMO

Amyotrophic lateral sclerosis (ALS) is a disease with highly heterogenous causes, most of which remain unknown, a multitude of possible disease mechanisms, and no therapy currently available that can halt disease progression. However, recent advances in antisense oligonucleotides have made them a viable option for targeted therapeutics for patients. These molecules offer a method of targeting RNA that is highly specific, adaptable, and does not require viral delivery. Antisense oligonucleotides are therefore being developed for several genetic causes of ALS. Furthermore, biological pathways involved in the pathogenesis of disease also offer tantalizing targets for intervention using antisense oligonucleotides. Here we detail existing and potential targets for antisense oligonucleotides in ALS and briefly examine the requirements for these drugs to reach and be effective in clinic.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Terapia de Alvo Molecular/métodos , Oligonucleotídeos Antissenso/genética , Sistemas de Liberação de Medicamentos , Humanos , Oligonucleotídeos Antissenso/química
17.
Neurobiol Aging ; 73: 229.e5-229.e9, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30348461

RESUMO

Analysis of 226 exome-sequenced UK cases of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia identified 2 individuals who harbored a P497H and P506S UBQLN2 mutation, respectively (n = 0.9%). The P506S index case presented with behavioral variant frontotemporal dementia at the age of 54 years then progressed to ALS surviving 3 years. Three sons presented with (1) slowly progressive pure spastic paraplegia with an onset at 25 years and (2) ALS with disease onset of 25 years and survival of 2 years, and (3) ALS presenting symptoms at the age of 26 years, respectively. Analysis of postmortem tissue from the index case revealed frequent neuronal cytoplasmic UBQLN2-positive inclusions in the dentate gyrus and TDP-43-positive neuronal cytoplasmic inclusions in the frontal and temporal cortex and granular cell layer of the dentate gyrus of the hippocampus. Furthermore, a comprehensive analysis of published UBQLN2 mutations demonstrated that only proline-rich domain mutations contribute to a significantly earlier age of onset in male patients (p = 0.0026).


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ciclo Celular/genética , Demência Frontotemporal/genética , Mutação/genética , Paraplegia/genética , Ubiquitinas/genética , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Giro Denteado/metabolismo , Progressão da Doença , Feminino , Lobo Frontal/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Fatores Sexuais , Lobo Temporal/metabolismo , Ubiquitinas/metabolismo
18.
Neurobiol Aging ; 71: 266.e1-266.e10, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30033073

RESUMO

Mutations in TANK binding kinase 1 (TBK1) have been linked to amyotrophic lateral sclerosis. Some TBK1 variants are nonsense and are predicted to cause disease through haploinsufficiency; however, many other mutations are missense with unknown functional effects. We exome sequenced 699 familial amyotrophic lateral sclerosis patients and identified 16 TBK1 novel or extremely rare protein-changing variants. We characterized a subset of these: p.G217R, p.R357X, and p.C471Y. Here, we show that the p.R357X and p.G217R both abolish the ability of TBK1 to phosphorylate 2 of its kinase targets, IRF3 and optineurin, and to undergo phosphorylation. They both inhibit binding to optineurin and the p.G217R, within the TBK1 kinase domain, reduces homodimerization, essential for TBK1 activation and function. Finally, we show that the proportion of TBK1 that is active (phosphorylated) is reduced in 5 lymphoblastoid cell lines derived from patients harboring heterozygous missense or in-frame deletion TBK1 mutations. We conclude that missense mutations in functional domains of TBK1 impair the binding and phosphorylation of its normal targets, implicating a common loss of function mechanism, analogous to truncation mutations.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ciclo Celular , Códon sem Sentido , Éxons , Feminino , Estudos de Associação Genética , Humanos , Fator Regulador 3 de Interferon/genética , Masculino , Proteínas de Membrana Transportadoras , Mutação de Sentido Incorreto , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Fator de Transcrição TFIIIA/genética
19.
Brain ; 129(Pt 4): 868-76, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16495328

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are both relentlessly progressive and ultimately fatal neurological disorders. ALS is familial in approximately 10% of cases and FTD in approximately 30%. Inheritance is usually autosomal dominant with variable penetrance. Phenotypic overlap between ALS and FTD can occur within the same kindred. Mutations in copper/zinc superoxide dismutase 1 (SOD1) are found in approximately 20% of familial and approximately 3% of sporadic ALS cases but are not associated with dementia. Mutations in microtubule associated protein tau (MAPT) are detected in approximately 30% of familial FTD kindreds. Dominant ALS with FTD has previously been linked to 9q21 and pure ALS to loci on 16q21, 18q21, 20p13. Here we report the results of a genome-wide linkage study in a large ALS and FTD kindred using Affymetrix 10K GeneChip microarrays. Linkage analysis of single nucleotide polymorphism (SNP) data identified consistently positive log of the odds (LOD) scores across chromosome 9p (maximal LOD score of 2.4). Fine mapping the region with microsatellite markers generated a maximal multipoint LOD score of 3.02 (theta = 0) at D9S1878. Recombination narrowed the conserved haplotype to 12 cM (11 Mb) at 9p13.2-21.3 (flanking markers D9S2154 and D9S1874). Bioinformatic analysis of the region has identified 103 known genes.


Assuntos
Esclerose Lateral Amiotrófica/genética , Cromossomos Humanos Par 9/genética , Demência/genética , Adulto , Idoso , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/patologia , Mapeamento Cromossômico , Biologia Computacional/métodos , Demência/complicações , Demência/patologia , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Escore Lod , Imageamento por Ressonância Magnética , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único
20.
Neurobiol Aging ; 49: 214.e1-214.e5, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27480424

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, which causes progressive and eventually fatal loss of motor function. Here, we describe genetic and pathologic characterization of brain tissue banked from 19 ALS patients over nearly 20 years at the Department of Anatomy and the Centre for Brain Research, University of Auckland, New Zealand. We screened for mutations in SOD1, TARDBP, FUS, and C9ORF72 genes and for neuropathology caused by phosphorylated TDP-43, dipeptide repeats (DPRs), and ubiquilin. We identified 2 cases with C9ORF72 repeat expansions. Both harbored phosphorylated TDP-43 and DPR inclusions. We show that DPR inclusions can incorporate or occur independently of ubiquilin. We also identified 1 case with a UBQLN2 mutation, which showed phosphorylated TDP-43 and characteristic ubiquilin protein inclusions. This is the first study of ALS genetics in New Zealand, adding New Zealand to the growing list of countries in which C9ORF72 repeat expansion and UBQLN2 mutations are detected in ALS cases.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Encéfalo/patologia , Proteína C9orf72/genética , Proteínas de Ciclo Celular/genética , Expansão das Repetições de DNA/genética , Estudos de Associação Genética , Mutação/genética , Ubiquitinas/genética , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Relacionadas à Autofagia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nova Zelândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA