Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 252: 126527, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32213375

RESUMO

Thermophilic nitrification has been proven in lab-scale bioreactors at 50 °C. The challenge is now to develop a solution for thermophilic nitrogen removal, integrating nitrification with denitrification and aerobic carbon removal. This pioneering study aimed at a single-sludge nitrification/denitrification process at 50 °C, through exposing nitrification in a step by step approach to anoxia and/or organics. Firstly, recurrent anoxia was tolerated by a nitrifying community during long-term membrane bioreactor (MBR) operation (85 days), with high ammonium oxidation efficiencies (>98%). Secondly, five organic carbon sources did not affect thermophilic ammonium and nitrite oxidation rates in three-day aerobic batch flask incubations. Moving to long-term tests with sequencing batch reactors (SBR) and MBR (>250 days), good nitrification performance was obtained at increasing COD/Ninfluent ratios (0, 0.5, 1, 2 and 3). Thirdly, combining nitrification, recurrent anoxia and presence of organic carbon resulted in a nitrogen removal efficiency of 92-100%, with a COD/Nremoved of 4.8 ± 0.6 and a nitrogen removal rate of 50 ± 14 mg N g-1 VSS d-1. Overall, this is the first proof of principle thermophilic nitrifiers can cope with redox fluctuations (aerobic/anoxic) and the aerobic or anoxic presence of organic carbon, can functionally co-exist with heterotrophs and that single-sludge nitrification/denitrification can be achieved.


Assuntos
Reatores Biológicos , Compostos de Amônio , Carbono , Desnitrificação , Nitrificação , Nitrogênio , Oxirredução , Esgotos , Eliminação de Resíduos Líquidos
2.
Water Res ; 172: 115462, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31958594

RESUMO

Anammox, the oxidation of ammonium with nitrite, is a key microbial process in the nitrogen cycle. Under mesophilic conditions (below 40 °C), it is widely implemented to remove nitrogen from wastewaters lacking organic carbon. Despite evidence of the presence of anammox bacteria in high-temperature environments, reports on the cultivation of thermophilic anammox bacteria are limited to a short-term experiment of 2 weeks. This study showcases the adaptation of a mesophilic inoculum to thermophilic conditions, and its characterization. First, an attached growth technology was chosen to obtain the process. In an anoxic fixed-bed biofilm bioreactor (FBBR), a slow linear temperature increase from 38 to over 48 °C (0.05-0.07 °C d-1) was imposed to the community over 220 days, after which the reactor was operated at 48 °C for over 200 days. Maximum total nitrogen removal rates reached up to 0.62 g N L-1 d-1. Given this promising performance, a suspended growth system was tested. The obtained enrichment culture served as inoculum for membrane bioreactors (MBR) operated at 50 °C, reaching a maximum total nitrogen removal rate of 1.7 g N L-1 d-1 after 35 days. The biomass in the MBR had a maximum specific anammox activity of 1.1 ± 0.1 g NH4+-N g-1 VSS d-1, and the growth rate was estimated at 0.075-0.19 d-1. The thermophilic cultures displayed nitrogen stoichiometry ratios typical for mesophilic anammox: 0.93-1.42 g NO2--Nremoved g-1 NH4+-Nremoved and 0.16-0.35 g NO3--Nproduced g-1 NH4+-Nremoved. Amplicon and Sanger sequencing of the 16S rRNA genes revealed a disappearance of the original "Ca. Brocadia" and "Ca. Jettenia" taxa, yielding Planctomycetes members with only 94-95% similarity to "Ca. Brocadia anammoxidans" and "Ca. B. caroliniensis", accounting for 45% of the bacterial FBBR community. The long-term operation of thermophilic anammox reactors and snapshot views on the nitrogen stoichiometry, kinetics and microbial community open up the development path of thermophilic partial nitritation/anammox. A first economic assessment highlighted that treatment of sludge reject water from thermophilic anaerobic digestion of sewage sludge may become attractive.


Assuntos
Compostos de Amônio , Reatores Biológicos , Anaerobiose , Nitrogênio , Oxirredução , RNA Ribossômico 16S , Esgotos , Temperatura
3.
Front Microbiol ; 10: 192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814983

RESUMO

Current methods determining biomass yield require sophisticated sensors for in situ measurements or multiple steady-state reactor runs. Determining the yield of specific groups of organisms in mixed cultures in a fast and easy manner remains challenging. This study describes a fast method to estimate the maximum biomass yield (Ymax), based on 13C incorporation during activity measurements. It was applied to mixed cultures containing ammonia oxidizing bacteria (AOB) or archaea (AOA) and nitrite oxidizing bacteria (NOB), grown under mesophilic (15-28°C) and thermophilic (50°C) conditions. Using this method, no distinction could be made between AOB and AOA co-existing in a community. A slight overestimation of the nitrifier biomass due to 13C redirection via SMP to heterotrophs could occur, meaning that this method determines the carbon fixation activity of the autotrophic microorganisms rather than the actual nitrifier biomass yield. Thermophilic AOA yields exceeded mesophilic AOB yields (0.22 vs. 0.06-0.11 g VSS g-1 N), possibly linked to a more efficient pathway for CO2 incorporation. NOB thermophilically produced less biomass (0.025-0.028 vs. 0.048-0.051 g VSS g-1 N), conceivably attributed to higher maintenance requirement, rendering less energy available for biomass synthesis. Interestingly, thermophilic nitrification yield was higher than its mesophilic counterpart, due to the dominance of AOA over AOB at higher temperatures. An instant temperature increase impacted the mesophilic AOB yield, corroborating the effect of maintenance requirement on production capacity. Model simulations of two realistic nitrification/denitrification plants were robust toward changing nitrifier yield in predicting effluent ammonium concentrations, whereas sludge composition was impacted. Summarized, a fast, precise and easily executable method was developed determining Ymax of ammonia and nitrite oxidizers in mixed communities.

4.
Water Res ; 156: 34-45, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30904709

RESUMO

Nitrification and denitrification, the key biological processes for thermophilic nitrogen removal, have separately been established in bioreactors at 50 °C. A well-characterized set of kinetic parameters is essential to integrate these processes while safeguarding the autotrophs performing nitrification. Knowledge on thermophilic nitrifying kinetics is restricted to isolated or highly enriched batch cultures, which do not represent bioreactor conditions. This study characterized the stoichiometry and kinetics of two thermophilic (50 °C) nitrifying communities. The most abundant ammonia oxidizing archaea (AOA) were related to the Nitrososphaera genus, clustering relatively far from known species Nitrososphaera gargensis (95.5% 16S rRNA gene sequence identity). The most abundant nitrite oxidizing bacteria (NOB) were related to Nitrospira calida (97% 16S rRNA gene sequence identity). The nitrification biomass yield was 0.20-0.24 g VSS g-1 N, resulting mainly from a high AOA yield (0.16-0.20 g VSS g-1 N), which was reflected in a high AOA abundance in the community (57-76%) compared to NOB (5-11%). Batch-wise determination of decay rates (AOA: 0.23-0.29 d-1; NOB: 0.32-0.43 d-1) rendered an overestimation compared to in situ estimations of overall decay rate (0.026-0.078 d-1). Possibly, the inactivation rate rather than the actual decay rate was determined in batch experiments. Maximum growth rates of AOA and NOB were 0.12-0.15 d-1 and 0.13-0.33 d-1 respectively. NOB were susceptible to nitrite, opening up opportunities for shortcut nitrogen removal. However, NOB had a similar growth rate and oxygen affinity (0.15-0.55 mg O2 L-1) as AOA and were resilient towards free ammonia (IC50 > 16 mg NH3-N L-1). This might complicate NOB outselection using common practices to establish shortcut nitrogen removal (SRT control; aeration control; free ammonia shocks). Overall, the obtained insights can assist in integrating thermophilic conversions and facilitate single-sludge nitrification/denitrification.


Assuntos
Desnitrificação , Nitrogênio , Amônia , Cinética , Nitrificação , Nitritos , Oxirredução , Filogenia , RNA Ribossômico 16S
5.
Bioresour Technol ; 291: 121833, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31357043

RESUMO

High-rate activated sludge (HRAS) systems typically generate diluted sludge which requires further thickening prior to anaerobic digestion (AD), besides the need to add considerable coagulant and flocculant for the solids separation. As an alternative to conventional gravitational settling, a dissolved air flotation (DAF) unit was coupled to a HRAS system or a high-rate contact stabilization (HiCS) system. The HRAS-DAF system allowed up to 78% removal of the influent solids, and the HiCS-DAF 67%. Both were within the range of values typically obtained for HRAS-settler systems, albeit at a lower chemical requirement. The separated sludge had a high concentration of up to 47 g COD L-1, suppressing the need of further thickening before AD. Methanation tests showed a biogas yield of up to 68% on a COD basis. The use of a DAF separation system can thus enable direct organics removal at high sludge concentration and with low chemical needs.


Assuntos
Esgotos , Biocombustíveis , Floculação , Eliminação de Resíduos Líquidos
6.
Sci Rep ; 9(1): 9561, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266970

RESUMO

Synthetic fertilizer production is associated with a high environmental footprint, as compounds typically dissolve rapidly leaching emissions to the atmosphere or surface waters. We tested two recovered nutrients with slower release patterns, as promising alternatives for synthetic fertilizers: struvite and a commercially available organic fertilizer. Using these fertilizers as nitrogen source, we conducted a rhizotron experiment to test their effect on plant performance and nutrient recovery in juvenile tomato plants. Plant performance was significantly improved when organic fertilizer was provided, promoting higher shoot biomass. Since the microbial community influences plant nitrogen availability, we characterized the root-associated microbial community structure and functionality. Analyses revealed distinct root microbial community structure when different fertilizers were supplied. However, plant presence significantly increased the similarity of the microbial community over time, regardless of fertilization. Additionally, the presence of the plant significantly reduced the potential ammonia oxidation rates, implying a possible role of the rhizosheath microbiome or nitrification inhibition by the plant. Our results indicate that nitrifying community members are impacted by the type of fertilizer used, while tomato plants influenced the potential ammonia-oxidizing activity of nitrogen-related rhizospheric microbial communities. These novel insights on interactions between recovered fertilizers, plant and associated microbes can contribute to develop sustainable crop production systems.


Assuntos
Fertilizantes , Microbiota , Microbiologia do Solo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Amônia/química , Amônia/metabolismo , Biomassa , Meios de Cultura , Concentração de Íons de Hidrogênio , Oxirredução , Desenvolvimento Vegetal
7.
Bioresour Technol ; 269: 104-112, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30153548

RESUMO

In specific municipal and industrial cases, thermophilic wastewater treatment (>45 °C) might bring cost advantages over commonly applied mesophilic processes (10-35 °C). To develop such a novel process, one needs sound parameters on kinetics, sludge yield and sludge settleability of three heterotrophic conversions: aerobic carbon removal, denitritation and denitrification. These features were evaluated in acetate-fed sequencing batch reactors (30, 40, 50 and 60 °C). Higher temperatures were accompanied by lower sludge production and maximum specific removal rates, resulting mainly from lower maximum growth rates. Thermophilic denitritation was demonstrated for the first time, with lower sludge production (18-26%), higher nitrogen removal rates (24-92%) and lower carbon requirement (40%) compared to denitrification. Acceptable settling of thermophilic aerobic (60 °C) and anoxic biomass (50 and 60 °C) was obtained. Overall, this parameter set may catalyze the establishment of thermophilic nitrogen removal, once nitritation and nitratation are characterized. Furthermore, waters with low COD/N ratio might benefit from thermophilic nitritation/denitritation.


Assuntos
Reatores Biológicos , Desnitrificação , Esgotos , Cinética , Nitrogênio , Temperatura , Eliminação de Resíduos Líquidos
8.
Bioresour Technol ; 257: 266-273, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29524912

RESUMO

Autotrophic denitrification with sulfur is an underexplored alternative to heterotrophic denitrification to remove nitrate from wastewater poor in organics. The application on ion exchange regeneration water (19.4-32.1 mS cm-1) is novel. Three fixed bed reactors were tested at 15 °C for >4 months, inoculated with activated sludge from sewage treatment. All were fast in start-up (<10 days) with high performance (94 ±â€¯2% removal efficiency). pH control with NaOH rendered higher nitrate removal rates than limestone addition to the bed (211 ±â€¯13 vs. 102 ±â€¯13 mg N L-1 d-1), related to higher pH (6.64 vs. 6.24) and sulfur surface area. Bacterial communities were strongly enriched in Sulfurimonas (63-67%) and Thiobacillus (24-26%). In an economic comparison, sulfur-based denitrification (€5.3 kg-1 N) was 15% cheaper than methanol-based denitrification (€6.22 kg-1 N) and both treatments were opex dominated (85.9 vs. 86.5%). Overall, the technological and economic feasibility should boost further implementation of sulfurotrophic denitrification.


Assuntos
Reatores Biológicos , Desnitrificação , Enxofre , Processos Autotróficos , Troca Iônica , Nitratos , Regeneração , Água , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA