Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Appl Toxicol ; 42(10): 1701-1722, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35543240

RESUMO

Most flavors used in e-liquids are generally recognized as safe for oral consumption, but their potential effects when inhaled are not well characterized. In vivo inhalation studies of flavor ingredients in e-liquids are scarce. A structure-based grouping approach was used to select 38 flavor group representatives (FGR) on the basis of known and in silico-predicted toxicological data. These FGRs were combined to create prototype e-liquid formulations and tested against cigarette smoke (CS) in a 5-week inhalation study. Female A/J mice were whole-body exposed for 6 h/day, 5 days/week, for 5 weeks to air, mainstream CS, or aerosols from (1) test formulations containing propylene glycol (PG), vegetable glycerol (VG), nicotine (N; 2% w/w), and flavor (F) mixtures at low (4.6% w/w), medium (9.3% w/w), or high (18.6% w/w) concentration or (2) base formulation (PG/VG/N). Male A/J mice were exposed to air, PG/VG/N, or PG/VG/N/F-high under the same exposure regimen. There were no significant mortality or in-life clinical findings in the treatment groups, with only transient weight loss during the early exposure adaptation period. While exposure to flavor aerosols did not cause notable lung inflammation, it caused only minimal adaptive changes in the larynx and nasal epithelia. In contrast, exposure to CS resulted in lung inflammation and moderate-to-severe changes in the epithelia of the nose, larynx, and trachea. In summary, the study evaluates an approach for assessing the inhalation toxicity potential of flavor mixtures, thereby informing the selection of flavor exposure concentrations (up to 18.6%) for a future chronic inhalation study.


Assuntos
Fumar Cigarros , Administração por Inalação , Aerossóis/toxicidade , Animais , Feminino , Glicerol/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos , Propilenoglicol/toxicidade , Nicotiana
2.
J Nat Prod ; 84(4): 1012-1021, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33706515

RESUMO

Natural alkaloids, a large class of plant-derived substances, have attracted considerable interest because of their pharmacological activities. In this study, the in vivo pharmacokinetics and anti-inflammatory profile of anatabine, a naturally occurring alkaloid, were characterized in rodents. Anatabine was found to be bioavailable and brain-penetrant following systemic administration. Following intraperitoneal (i.p.) administration (1, 2, and 5 mg/kg), anatabine caused a dose-dependent reduction in carrageenan-induced paw edema in rats; in mice, it inhibited the production of pro-inflammatory cytokines and simultaneously elevated the levels of an anti-inflammatory cytokine in a dose-dependent manner 2 h after lipopolysaccharide challenge. Furthermore, anatabine (∼10 and ∼20 mg/kg/day for 4 weeks; inhalation exposure) had effects in a murine model of multiple sclerosis, reducing neurological deficits and bodyweight loss. Comparative studies of the pharmacokinetics and anti-inflammatory activity of anatabine demonstrated its bioequivalence in rats following i.p. administration and inhalation exposure. This study not only provides the first detailed profile of anatabine pharmacokinetics in rodents but also comprehensively characterizes the anti-inflammatory activities of anatabine in acute and chronic inflammatory models. These findings provide a basis for further characterizing and optimizing the anti-inflammatory properties of anatabine.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Piridinas/farmacologia , Alcaloides/farmacocinética , Animais , Anti-Inflamatórios/farmacocinética , Encéfalo/metabolismo , Carragenina , Citocinas , Edema/tratamento farmacológico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/farmacocinética , Ratos , Ratos Wistar
3.
Arch Toxicol ; 95(5): 1805-1829, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33963423

RESUMO

Cigarette smoking is the major cause of chronic obstructive pulmonary disease. Considerable attention has been paid to the reduced harm potential of nicotine-containing inhalable products such as electronic cigarettes (e-cigarettes). We investigated the effects of mainstream cigarette smoke (CS) and e-vapor aerosols (containing nicotine and flavor) generated by a capillary aerosol generator on emphysematous changes, lung function, and molecular alterations in the respiratory system of female Apoe-/- mice. Mice were exposed daily (3 h/day, 5 days/week) for 6 months to aerosols from three different e-vapor formulations-(1) carrier (propylene glycol and vegetable glycerol), (2) base (carrier and nicotine), or (3) test (base and flavor)-or to CS from 3R4F reference cigarettes. The CS and base/test aerosol concentrations were matched at 35 µg nicotine/L. CS exposure, but not e-vapor exposure, led to impairment of lung function (pressure-volume loop area, A and K parameters, quasi-static elastance and compliance) and caused marked lung inflammation and emphysematous changes, which were confirmed histopathologically and morphometrically. CS exposure caused lung transcriptome (activation of oxidative stress and inflammatory responses), lipidome, and proteome dysregulation and changes in DNA methylation; in contrast, these effects were substantially reduced in response to the e-vapor aerosol exposure. Compared with sham, aerosol exposure (carrier, base, and test) caused a slight impact on lung inflammation and epithelia irritation. Our results demonstrated that, in comparison with CS, e-vapor aerosols induced substantially lower biological and pathological changes in the respiratory tract associated with chronic inflammation and emphysema.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotiana/toxicidade , Fumaça , Aerossóis , Animais , Apolipoproteínas E/metabolismo , Feminino , Exposição por Inalação , Pulmão , Camundongos , Nicotina , Testes de Função Respiratória , Fumar , Produtos do Tabaco , Transcriptoma
4.
J Appl Toxicol ; 41(10): 1598-1619, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33825214

RESUMO

Cigarette smoking is one major modifiable risk factor in the development and progression of chronic obstructive pulmonary disease and cardiovascular disease. To characterize and compare cigarette smoke (CS)-induced disease endpoints after exposure in either whole-body (WB) or nose-only (NO) exposure systems, we exposed apolipoprotein E-deficient mice to filtered air (Sham) or to the same total particulate matter (TPM) concentration of mainstream smoke from 3R4F reference cigarettes in NO or WB exposure chambers (EC) for 2 months. At matching TPM concentrations, we observed similar concentrations of carbon monoxide, acetaldehyde, and acrolein, but higher concentrations of nicotine and formaldehyde in NOEC than in WBEC. In both exposure systems, CS exposure led to the expected adaptive changes in nasal epithelia, altered lung function, lung inflammation, and pronounced changes in the nasal epithelial transcriptome and lung proteome. Exposure in the NOEC caused generally more severe histopathological changes in the nasal epithelia and a higher stress response as indicated by body weight decrease and lower blood lymphocyte counts compared with WB exposed mice. Erythropoiesis, and increases in total plasma triglyceride levels and atherosclerotic plaque area were observed only in CS-exposed mice in the WBEC group but not in the NOEC group. Although the composition of CS in the breathing zone is not completely comparable in the two exposure systems, the CS-induced respiratory disease endpoints were largely confirmed in both systems, with a higher magnitude of severity after NO exposure. CS-accelerated atherosclerosis and other pro-atherosclerotic factors were only significant in WBEC.


Assuntos
Absorção Fisiológica , Apolipoproteínas/efeitos dos fármacos , Apolipoproteínas/metabolismo , Doenças Cardiovasculares/induzido quimicamente , Fumar Cigarros/efeitos adversos , Exposição por Inalação , Pneumopatias/induzido quimicamente , Fumaça/efeitos adversos , Animais , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Pneumopatias/fisiopatologia , Masculino , Camundongos
5.
Am J Physiol Heart Circ Physiol ; 318(3): H604-H631, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31975625

RESUMO

Smoking cigarettes is harmful to the cardiovascular system. Considerable attention has been paid to the reduced harm potential of alternative nicotine-containing inhalable products such as e-cigarettes. We investigated the effects of E-vapor aerosols or cigarette smoke (CS) on atherosclerosis progression, cardiovascular function, and molecular changes in the heart and aorta of female apolipoprotein E-deficient (ApoE-/-) mice. The mice were exposed to aerosols from three different E-vapor formulations: 1) carrier (propylene glycol and vegetable glycerol), 2) base (carrier and nicotine), or 3) test (base and flavor) or to CS from 3R4F reference cigarettes for up to 6 mo. Concentrations of CS and base or test aerosols were matched at 35 µg nicotine/L. Exposure to CS, compared with sham-exposed fresh air controls, accelerated atherosclerotic plaque formation, whereas no such effect was seen for any of the three E-vapor aerosols. Molecular changes indicated disease mechanisms related to oxidative stress and inflammation in general, plus changes in calcium regulation, and altered cytoskeletal organization and microtubule dynamics in the left ventricle. While ejection fraction, fractional shortening, cardiac output, and isovolumic contraction time remained unchanged following E-vapor aerosols exposure, the nicotine-containing base and test aerosols caused an increase in isovolumic relaxation time similar to CS. A nicotine-related increase in pulse wave velocity and arterial stiffness was also observed, but it was significantly lower for base and test aerosols than for CS. These results demonstrate that in comparison with CS, E-vapor aerosols induce substantially lower biological responses associated with smoking-related cardiovascular diseases.NEW & NOTEWORTHY Analysis of key urinary oxidative stress markers and proinflammatory cytokines showed an absence of oxidative stress and inflammation in the animals exposed to E-vapor aerosols. Conversely, animals exposed to conventional cigarette smoke had high urinary levels of these markers. When compared with conventional cigarette smoke, E-vapor aerosols induced smaller atherosclerotic plaque surface area and volume. Systolic and diastolic cardiac function, as well as endothelial function, were further significantly less affected by electronic cigarette aerosols than conventional cigarette smoke. Molecular analysis demonstrated that E-vapor aerosols induce significantly smaller transcriptomic dysregulation in the heart and aorta compared with conventional cigarette smoke.


Assuntos
Aerossóis/toxicidade , Aterosclerose/etiologia , Doenças Cardiovasculares/etiologia , Vapor do Cigarro Eletrônico/toxicidade , Coração/efeitos dos fármacos , Fumaça/efeitos adversos , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Progressão da Doença , Feminino , Exposição por Inalação , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos
6.
Arch Toxicol ; 94(6): 2179-2206, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367274

RESUMO

The use of flavoring substances is an important element in the development of reduced-risk products for adult smokers to increase product acceptance and encourage switching from cigarettes. In a first step towards characterizing the sub-chronic inhalation toxicity of neat flavoring substances, a study was conducted using a mixture of the substances in a base solution of e-liquid, where the standard toxicological endpoints of the nebulized aerosols were supplemented with transcriptomics analysis. The flavor mixture was produced by grouping 178 flavors into 26 distinct chemical groups based on structural similarities and potential metabolic and biological effects. Flavoring substances predicted to show the highest toxicological effect from each group were selected as the flavor group representatives (FGR). Following Organization for Economic Cooperation and Development Testing Guideline 413, rats were exposed to three concentrations of the FGR mixture in an e-liquid composed of nicotine (23 µg/L), propylene glycol (1520 µg/L), and vegetable glycerin (1890 µg/L), while non-flavored and no-nicotine mixtures were included as references to identify potential additive or synergistic effects between nicotine and the flavoring substances. The results indicated that the inhalation of an e-liquid containing the mixture of FGRs caused very minimal local and systemic toxic effects. In particular, there were no remarkable clinical (in-life) observations in flavored e-liquid-exposed rats. The biological effects related to exposure to the mixture of neat FGRs were limited and mainly nicotine-mediated, including changes in hematological and blood chemistry parameters and organ weight. These results indicate no significant additive biological changes following inhalation exposure to the nebulized FGR mixture above the nicotine effects measured in this sub-chronic inhalation study. In a subsequent study, e-liquids with FGR mixtures will be aerosolized by thermal treatment and assessed for toxicity.


Assuntos
Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Vaping/efeitos adversos , Animais , Biomarcadores/sangue , Qualidade de Produtos para o Consumidor , Feminino , Exposição por Inalação , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Sprague-Dawley , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Medição de Risco , Fatores de Tempo , Testes de Toxicidade
7.
Inhal Toxicol ; 31(6): 248-257, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31496314

RESUMO

Background: Nicotine, because of its volatility, has a complex dosimetry following inhalation as a vapor/aerosol mix. To better control the dosimetry, nicotine could be formulated with a suitable dry powder excipient for use in a clinical inhaler. Aim and Methods: The aim of this study was to investigate the pharmacokinetic PK profile of two dry powder formulations containing 2.5% or 5% nicotine using three experimental models associated to the PreciseInhale™ aerosolization system: the in vitro DissolvIt dissolution system; the ex vivo isolated, ventilated, and perfused lung (IPL) of the rat; and the in vivo intratracheally intubated rat. Results and Discussion: Following exposure, both nicotine formulations had very rapid and similar dissolution and absorption kinetics in both the DissolvIt and IPL exposure models, with an initial half-time of absorption to the single-pass perfusate of 34 and 72 seconds, respectively. In the intratracheally intubated rat, following a rapid initial equilibration between the lungs and systemic compartments, nicotine had a systemic elimination half-time of 2.3-2.4 hours for both formulations. The rapid pulmonary PK of nicotine was likely close to the theoretical equilibration of a low-binding substance with a tissue-blood partition coefficient close to 1. Conclusions: The data generated with the three experimental models provided a comprehensive picture of the inhalation PK of the two nicotine formulations. In particular, the results showed a very rapid dissolution and absorption of the two nicotine formulations and these results could be highly useful for improving the design and calibration of physiologically based PK models to produce more robust predictions. Abbreviations: AED: animal equivalent dose; BW: body weight; HPLC: high-performance liquid chromatography; IPL: isolated, ventilated, and perfused lung; PK: pharmacokinetics; SEM: scanning electron microscopy; USP: United States Pharmacopeia.


Assuntos
Nicotina/administração & dosagem , Nicotina/farmacocinética , Administração por Inalação , Aerossóis , Animais , Pulmão/metabolismo , Masculino , Nicotina/sangue , Pós , Ratos Sprague-Dawley
8.
Inhal Toxicol ; 30(13-14): 553-567, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30849254

RESUMO

We compared early biological changes in mice after inhalation exposures to cigarette smoke or e-vapor aerosols (MarkTen® cartridge with Carrier, Test-1, or Test-2 formulations; 4% nicotine). Female C57BL/6 mice were exposed to 3R4F cigarette smoke or e-vapor aerosols by nose-only inhalation for up to 4 hours/day, 5 days/week, for 3 weeks. The 3R4F and e-vapor exposures were set to match the target nose port aerosol nicotine concentration (∼41 µg/L). Only the 3R4F group showed postexposure clinical signs such as tremors and lethargy. At necropsy, the 3R4F group had significant increases in lung weight and changes in bronchoalveolar lavage parameters, as well as microscopic findings in the respiratory tract. The e-vapor groups had minimal microscopic changes, including squamous metaplasia in laryngeal epiglottis, and histiocytic infiltrates in the lung (Test-2 group only). The 3R4F group had a higher incidence and severity of microscopic findings compared to any e-vapor group. Transcriptomic analysis also showed that the 3R4F group had the highest number of differentially expressed genes compared to Sham Control. Among e-vapor groups, Test-2 group had more differentially expressed genes but the magnitude of gene expression-based network perturbations in all e-vapor groups was ∼94% less than the 3R4F group. On proteome analysis in the lung, differentially regulated proteins were detected in the 3R4F group only. In conclusion, 3-weeks of 3R4F exposure induced molecular and microscopic changes associated with smoking-related diseases in the respiratory tract, while e-vapor exposures showed substantially reduced biological activities.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Sistema Respiratório/efeitos dos fármacos , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Administração por Inalação , Aerossóis , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Carboxihemoglobina/análise , Feminino , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Testes de Função Respiratória , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia
9.
Inhal Toxicol ; 28(5): 226-40, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27027324

RESUMO

The liver is one of the most important organs involved in elimination of xenobiotic and potentially toxic substances. Cigarette smoke (CS) contains more than 7000 chemicals, including those that exert biological effects and cause smoking-related diseases. Though CS is not directly hepatotoxic, a growing body of evidence suggests that it may exacerbate pre-existing chronic liver disease. In this study, we integrated toxicological endpoints with molecular measurements and computational analyses to investigate effects of exposures on the livers of Apoe(-/- )mice. Mice were exposed to 3R4F reference CS, to an aerosol from the Tobacco Heating System (THS) 2.2, a candidate modified risk tobacco product (MRTP) or to filtered air (Sham) for up to 8 months. THS2.2 takes advantage of a "heat-not-burn" technology that, by heating tobacco, avoids pyrogenesis and pyrosynthesis. After CS exposure for 2 months, some groups were either switched to the MRTP or filtered air. While no group showed clear signs of hepatotoxicity, integrative analysis of proteomics and transcriptomics data showed a CS-dependent impairment of specific biological networks. These networks included lipid and xenobiotic metabolism and iron homeostasis that likely contributed synergistically to exacerbating oxidative stress. In contrast, most proteomic and transcriptomic changes were lower in mice exposed to THS2.2 and in the cessation and switching groups compared to the CS group. Our findings elucidate the complex biological responses of the liver to CS exposure. Furthermore, they provide evidence that THS2.2 aerosol has reduced biological effects, as compared with CS, on the livers of Apoe(-/- )mice.


Assuntos
Fígado/efeitos dos fármacos , Nicotiana/toxicidade , Fumaça , Produtos do Tabaco/toxicidade , Animais , Apolipoproteínas E/genética , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Camundongos Knockout , Proteômica , Risco , Abandono do Hábito de Fumar
10.
Regul Toxicol Pharmacol ; 81 Suppl 2: S17-S26, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27450400

RESUMO

This publication introduces a series of eight other publications describing the non-clinical assessment and initial clinical study of a candidate modified risk tobacco product (MRTP) - the Tobacco Heating System 2.2 (THS2.2). This paper presents background information on tobacco harm reduction, to complement the approaches aimed at increasing smoking cessation and reducing smoking initiation to reduce the morbidity and mortality caused by cigarette smoking. THS2.2 heats tobacco without combustion, and the resulting formation of harmful and potentially harmful constituents (HPHC) is greatly reduced compared with cigarette smoke. Assessment of the THS2.2 aerosol in vitro and in vivo reveals reduced toxicity and no new hazards. Additional mechanistic endpoints, measured as part of in vivo studies, confirmed reduced impact on smoking-related disease networks. The clinical study confirmed the reduced exposure to HPHCs in smokers switching to THS2.2, and the associated transcriptomic study confirmed the utility of a gene expression signature, consisting of only 11 genes tested in the blood transcriptome of subjects enrolled in the clinical study, as a complementary measure of exposure response. The potential of THS2.2 as an MRTP is demonstrated by the assessment and additional publications cited in this series.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Fumaça/efeitos adversos , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Testes de Toxicidade/métodos , Aerossóis , Animais , Biologia Computacional , Qualidade de Produtos para o Consumidor , Desenho de Equipamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Genômica , Humanos , Exposição por Inalação/efeitos adversos , Avaliação de Programas e Projetos de Saúde , Medição de Risco , Fumar/genética , Transcriptoma/efeitos dos fármacos
11.
Regul Toxicol Pharmacol ; 81 Suppl 2: S123-S138, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27818347

RESUMO

Modified risk tobacco products (MRTPs) are being developed with the aim of reducing smoking-related health risks. The Tobacco Heating System 2.2 (THS2.2) is a candidate MRTP that uses the heat-not-burn principle. Here, systems toxicology approaches were engaged to assess the respiratory effects of mentholated THS2.2 (THS2.2M) in a 90-day rat inhalation study (OECD test guideline 413). The standard endpoints were complemented by transcriptomics and quantitative proteomics analyses of respiratory nasal epithelium and lung tissue and by lipidomics analysis of lung tissue. The adaptive response of the respiratory nasal epithelium to conventional cigarette smoke (CS) included squamous cell metaplasia and an inflammatory response, with high correspondence between the molecular and histopathological results. In contrast to CS exposure, the adaptive tissue and molecular changes to THS2.2M aerosol exposure were much weaker and were limited mostly to the highest THS2.2M concentration in female rats. In the lung, CS exposure induced an inflammatory response, triggered cellular stress responses, and affected sphingolipid metabolism. These responses were not observed or were much lower after THS2.2M aerosol exposure. Overall, this system toxicology analysis complements and reconfirms the results from classical toxicological endpoints and further suggests potentially reduced health risks of THS2.2M.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Mentol/toxicidade , Fumaça/efeitos adversos , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Testes de Toxicidade/métodos , Aerossóis , Animais , Qualidade de Produtos para o Consumidor , Relação Dose-Resposta a Droga , Desenho de Equipamento , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Mentol/análise , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/patologia , Pneumonia/prevenção & controle , Proteômica , Ratos Sprague-Dawley , Medição de Risco , Fumaça/análise , Fumar/genética , Biologia de Sistemas , Fatores de Tempo , Produtos do Tabaco/análise , Toxicogenética , Transcriptoma/efeitos dos fármacos
12.
Regul Toxicol Pharmacol ; 81 Suppl 2: S93-S122, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27818348

RESUMO

The toxicity of a mentholated version of the Tobacco Heating System (THS2.2M), a candidate modified risk tobacco product (MRTP), was characterized in a 90-day OECD inhalation study. Differential gene and protein expression analysis of nasal epithelium and lung tissue was also performed to record exposure effects at the molecular level. Rats were exposed to filtered air (sham), to THS2.2M (at 15, 23 and 50 µg nicotine/l), to two mentholated reference cigarettes (MRC) (at 23 µg nicotine/l), or to the 3R4F reference cigarette (at 23 µg nicotine/l). MRCs were designed to meet 3R4F specifications. Test atmosphere analyses demonstrated that aldehydes were reduced by 75%-90% and carbon monoxide by 98% in THS2.2M aerosol compared with MRC smoke; aerosol uptake was confirmed by carboxyhemoglobin and menthol concentrations in blood, and by the quantities of urinary nicotine metabolites. Systemic toxicity and alterations in the respiratory tract were significantly lower in THS2.2M-exposed rats compared with MRC and 3R4F. Pulmonary inflammation and the magnitude of the changes in gene and protein expression were also dramatically lower after THS2.2M exposure compared with MRCs and 3R4F. No menthol-related effects were observed after MRC mainstream smoke-exposure compared with 3R4F.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Mentol/toxicidade , Fumaça/efeitos adversos , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Testes de Toxicidade/métodos , Aerossóis , Animais , Biomarcadores/sangue , Biomarcadores/urina , Biologia Computacional , Qualidade de Produtos para o Consumidor , Relação Dose-Resposta a Droga , Desenho de Equipamento , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Genômica , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Mentol/análise , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Ratos Sprague-Dawley , Medição de Risco , Fumaça/análise , Fumar/sangue , Fumar/genética , Fumar/urina , Fatores de Tempo , Produtos do Tabaco/análise , Toxicogenética , Transcriptoma/efeitos dos fármacos
13.
Regul Toxicol Pharmacol ; 81 Suppl 2: S59-S81, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27793746

RESUMO

The objective of the study was to characterize the toxicity from sub-chronic inhalation of test atmospheres from the candidate modified risk tobacco product (MRTP), Tobacco Heating System version 2.2 (THS2.2), and to compare it with that of the 3R4F reference cigarette. A 90-day nose-only inhalation study on Sprague-Dawley rats was performed, combining classical and systems toxicology approaches. Reduction in respiratory minute volume, degree of lung inflammation, and histopathological findings in the respiratory tract organs were significantly less pronounced in THS2.2-exposed groups compared with 3R4F-exposed groups. Transcriptomics data obtained from nasal epithelium and lung parenchyma showed concentration-dependent differential gene expression following 3R4F exposure that was less pronounced in the THS2.2-exposed groups. Molecular network analysis showed that inflammatory processes were the most affected by 3R4F, while the extent of THS2.2 impact was much lower. Most other toxicological endpoints evaluated did not show exposure-related effects. Where findings were observed, the effects were similar in 3R4F- and THS2.2-exposed animals. In summary, toxicological changes observed in the respiratory tract organs of THS2.2 aerosol-exposed rats were much less pronounced than in 3R4F-exposed rats while other toxicological endpoints either showed no exposure-related effects or were comparable to what was observed in the 3R4F-exposed rats.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Testes de Toxicidade/métodos , Aerossóis , Animais , Biologia Computacional , Qualidade de Produtos para o Consumidor , Desenho de Equipamento , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica , Humanos , Exposição por Inalação/efeitos adversos , Masculino , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/fisiopatologia , Pneumonia/prevenção & controle , Ratos Sprague-Dawley , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/fisiopatologia , Medição de Risco , Fumaça/efeitos adversos , Fumar/genética , Biologia de Sistemas , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
14.
Regul Toxicol Pharmacol ; 81 Suppl 2: S27-S47, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27720919

RESUMO

The chemical composition, in vitro genotoxicity, and cytotoxicity of the mainstream aerosol from the Tobacco Heating System 2.2 (THS2.2) were compared with those of the mainstream smoke from the 3R4F reference cigarette. In contrast to the 3R4F, the tobacco plug in the THS2.2 is not burnt. The low operating temperature of THS2.2 caused distinct shifts in the aerosol composition compared with 3R4F. This resulted in a reduction of more than 90% for the majority of the analyzed harmful and potentially harmful constituents (HPHCs), while the mass median aerodynamic diameter of the aerosol remained similar. A reduction of about 90% was also observed when comparing the cytotoxicity determined by the neutral red uptake assay and the mutagenic potency in the mouse lymphoma assay. The THS2.2 aerosol was not mutagenic in the Ames assay. The chemical composition of the THS2.2 aerosol was also evaluated under extreme climatic and puffing conditions. When generating the THS2.2 aerosol under "desert" or "tropical" conditions, the generation of HPHCs was not significantly modified. When using puffing regimens that were more intense than the standard Health Canada Intense (HCI) machine-smoking conditions, the HPHC yields remained lower than when smoking the 3R4F reference cigarette with the HCI regimen.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Mutagênese , Testes de Mutagenicidade/métodos , Fumaça/efeitos adversos , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Aerossóis , Animais , Células 3T3 BALB , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Qualidade de Produtos para o Consumidor , Desenho de Equipamento , Genômica , Humanos , Exposição por Inalação/efeitos adversos , Camundongos , Tamanho da Partícula , Medição de Risco , Fumaça/análise , Fumar/genética , Produtos do Tabaco/análise
15.
Toxicol Mech Methods ; 26(6): 389-413, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27117495

RESUMO

Various electronic nicotine delivery systems (ENDS), of which electronic cigarettes (e-cigs) are the most recognized prototype, have been quickly gaining ground on conventional cigarettes because they are perceived as less harmful. Research assessing the potential effects of ENDS exposure in humans is currently limited and inconclusive. New products are emerging with numerous variations in designs and performance parameters within and across brands. Acknowledging these challenges, we present here a proposed framework for an in vitro systems toxicology assessment of e-liquids and their aerosols, intended to complement the battery of assays for standard toxicity assessments. The proposed framework utilizes high-throughput toxicity assessments of e-liquids and their aerosols, in which the device-to-device variability is minimized, and a systems-level investigation of the cellular mechanisms of toxicity is an integral part. An analytical chemistry investigation is also included as a part of the framework to provide accurate and reliable chemistry data solidifying the toxicological assessment. In its simplest form, the framework comprises of three main layers: (1) high-throughput toxicity screening of e-liquids using primary human cell culture systems; (2) toxicity-related mechanistic assessment of selected e-liquids, and (3) toxicity-related mechanistic assessment of their aerosols using organotypic air-liquid interface airway culture systems. A systems toxicology assessment approach is leveraged to enable in-depth analyses of the toxicity-related cellular mechanisms of e-liquids and their aerosols. We present example use cases to demonstrate the suitability of the framework for a robust in vitro assessment of e-liquids and their aerosols.


Assuntos
Poluentes Atmosféricos/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Testes de Toxicidade/instrumentação , Testes de Toxicidade/métodos , Aerossóis , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Desenho de Equipamento , Ensaios de Triagem em Larga Escala , Humanos , Biologia de Sistemas , Volatilização
16.
Inhal Toxicol ; 27(9): 405-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26295358

RESUMO

Toxicity of nebulized nicotine (Nic) and nicotine/pyruvic acid mixtures (Nic/Pyr) was characterized in a 28-day Organization for Economic Co-operation and Development 412 inhalation study with additional transcriptomic and lipidomic analyses. Sprague-Dawley rats were nose-only exposed, 6 h/day, 5 days/week to filtered air, saline, nicotine (50 µg/l), sodium pyruvate (NaPyr, 33.9 µg/l) or equimolar Nic/Pyr mixtures (18, 25 and 50 µg nicotine/l). Saline and NaPyr caused no health effects, but rats exposed to nicotine-containing aerosols had decreased body weight gains and concentration-dependent increases in liver weight. Blood neutrophil counts were increased and lymphocyte counts decreased in rats exposed to nicotine; activities of alkaline phosphatase and alanine aminotransferase were increased, and levels of cholesterol and glucose decreased. The only histopathologic finding in non-respiratory tract organs was increased liver vacuolation and glycogen content. Respiratory tract findings upon nicotine exposure (but also some phosphate-buffered saline aerosol effects) were observed only in the larynx and were limited to adaptive changes. Gene expression changes in the lung and liver were very weak. Nic and Nic/Pyr caused few significant changes (including Cyp1a1 gene upregulation). Changes were predominantly related to energy metabolism and fatty acid metabolism but did not indicate an obvious toxicity-related response. Nicotine exposure lowered plasma lipids, including cholesteryl ester (CE) and free cholesterol and, in the liver, phospholipids and sphingolipids. Nic, NaPyr and Nic/Pyr decreased hepatic triacylglycerol and CE. In the lung, Nic and Nic/Pyr increased CE levels. These data suggest that only minor biologic effects related to inhalation of Nic or Nic/Pyr aerosols were observed in this 28-day study.


Assuntos
Antioxidantes/toxicidade , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Ácido Pirúvico/toxicidade , Dispositivos para o Abandono do Uso de Tabaco/efeitos adversos , Administração por Inalação , Aerossóis , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Distribuição Aleatória , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos , Testes de Toxicidade Subcrônica , Aumento de Peso/efeitos dos fármacos
17.
Eur J Pharm Sci ; 180: 106321, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336278

RESUMO

Absorption of inhaled compounds can occur from multiple sites based on upper and lower respiratory tract deposition, and clearance mechanisms leading to differential local and systemic pharmacokinetics. Deriving inhaled aerosol dosimetry and local tissue concentrations for nose-only exposure in rodents and inhaled products in humans is challenging. In this study we use inhaled nicotine as an example to identify regional respiratory tract deposition, absorption fractions, and their contribution toward systemic pharmacokinetics in rodents and humans. A physiologically based pharmacokinetic (PBPK) model was constructed to describe the disposition of nicotine and its major metabolite, cotinine. The model description for the lungs was simplified to include an upper respiratory tract region with active mucociliary clearance and a lower respiratory tract region. The PBPK model parameters such as rate of oral absorption, metabolism and clearance were fitted to the published nicotine and cotinine plasma concentrations post systemic administration and oral dosing. The fractional deposition of inhaled aerosol in the upper and lower respiratory tract regions was estimated by fitting the plasma concentrations. The model predicted upper respiratory tract deposition was 63.9% for nose-only exposure to nicotine containing nebulized aqueous aerosol in rats and 60.2% for orally inhaled electronic vapor product in humans. A marked absorption of nicotine from the upper respiratory tract and the gastrointestinal tract for inhaled aqueous aerosol contributed to the differential systemic pharmacokinetics in rats and humans. The PBPK model derived dosimetry shows that the current aerosol dosimetry models with their posteriori application using independent aerosol physicochemical characterization to predict aerosol deposition are insufficient and will need to consider complex interplay of inhaled aerosol evolutionary process. While the study highlights the needs for future research, it provides a preliminary framework for interpreting pharmacokinetics of inhaled aerosols to facilitate the analysis of in vivo exposure-responses for pharmacological and toxicological assessments.


Assuntos
Pulmão , Nicotina , Humanos , Ratos , Animais , Administração por Inalação , Aerossóis/química , Pulmão/metabolismo , Cinética , Modelos Biológicos
18.
J Vis Exp ; (182)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35499356

RESUMO

The capillary aerosol generator (CAG) is operated with the principal of thermal liquid evaporation through heating of e-liquid in the initial phase, followed by nucleation and condensation regulated through a mixture of airflow to generate aerosols, such as in an electronic cigarette (EC). The CAG is particularly useful in generating aerosols of large volumes in a continuous manner, for instances such as in vivo inhalation toxicology studies, where usage of ECs is not feasible. The thermal effects of generating aerosol from the CAG are similar in terms of temperature applied in an EC, thus allowing investigators to assess the vapors of e-liquids at scale and reproducibility. As the operation of the CAG allows users to control critical parameters such as the flow rate of e-liquid, heating temperatures and dilution air flows, it allows investigators to test various e-liquid formulations in a well-controlled device. Properties, such as aerosol particle size, are demonstrated to be regulated with the air flow rate with respect to the e-liquid flow and e-liquid composition. The CAG, however, is limited in assessing common EC-related issues, such as overheating of its elements. We seek to demonstrate that the CAG can generate aerosol that is reproducible and continuous, by assessing the chemical and physical aerosol characteristics with a chosen e-liquid formulation. The protocol describes the operating parameters of liquid flow rate, dilution air-flow rates and operating procedures needing to optimize the aerosol concentration and particle size required for an in vivo toxicology study. Presenting the representative results from the protocol and discussing the challenges and applications of working with a CAG, we demonstrate that CAG can be used in a reproducible fashion. The technology and protocol, that has been developed from prior work, serve as a foundation for future innovations for laboratory-controlled aerosol generation investigations.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aerossóis , Tamanho da Partícula , Reprodutibilidade dos Testes , Veias
19.
Front Toxicol ; 4: 878976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35516526

RESUMO

Many flavor ingredients are often used in potentially reduced-risk tobacco products (such as e-vapor products). Although most are "generally recognized as safe (GRAS)" when used in food, there is limited information available on their long-term health effects when delivered by inhalation. While obtaining route-of-exposure-specific toxicological data on flavor ingredients is critical to product evaluation, the large number of individual flavor ingredients available and their potential combinations render classical toxicological assessment approaches impractical, as they may require years of preclinical investigations and thousands of laboratory animals. Therefore, we propose a pragmatic approach in which flavor ingredients are initially assigned to groups of structurally related compounds (Flavor Groups), from which flavor group representatives (FGR) are then selected and tested individually and as a mixture in vitro and in vivo. The premise is that structurally related compounds would have comparable metabolic and biological activity and that the data generated using FGRs could support the toxicological assessment of other structurally related flavor ingredients of their respective Flavor Groups. This approach is explained in a step-wise manner and exemplified by a case study, along with its strengths, limitations as well as recommendations for further confirmatory testing. Once completed, this FGR approach could significantly reduce the time and resources required for filling the data gap in understanding the health risks of many flavor ingredients while also minimizing the need for laboratory animals.

20.
Front Microbiol ; 12: 587745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276574

RESUMO

Cigarette smoking causes adverse health effects that might occur shortly after smoking initiation and lead to the development of inflammation and cardiorespiratory disease. Emerging studies have demonstrated the role of the intestinal microbiome in disease pathogenesis. The intestinal microbiome is susceptible to the influence of environmental factors such as smoking, and recent studies have indicated microbiome changes in smokers. Candidate modified risk tobacco products (CMRTP) are being developed to provide substitute products to lower smoking-related health risks in smokers who are unable or unwilling to quit. In this study, the ApoE-/- mouse model was used to investigate the impact of cigarette smoke (CS) from the reference cigarette 3R4F and aerosols from two CMRTPs based on the heat-not-burn principle [carbon-heated tobacco product 1.2 (CHTP 1.2) and tobacco heating system 2.2 (THS 2.2)] on the intestinal microbiome over a 6-month period. The effect of cessation or switching to CHTP 1.2 after 3 months of CS exposure was also assessed. Next-generation sequencing was used to evaluate the impact of CMRTP aerosols in comparison to CS on microbiome composition and gene expression in the digestive tract of mice. Our analyses highlighted significant gene dysregulation in response to 3R4F exposure at 4 and 6 months. The findings showed an increase in the abundance of Akkermansiaceae upon CS exposure, which was reversed upon cessation. Cessation resulted in a significant decrease in Akkemansiaceae abundance, whereas switching to CHTP 1.2 resulted in an increase in Lactobacillaceae abundance. These microbial changes could be important for understanding the effect of CS on gut function and its relevance to disease pathogenesis via the microbiome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA