RESUMO
The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media.
RESUMO
We present Vinamax, a simulation tool for nanoparticles that aims at simulating magnetization dynamics on very large timescales. To this end, each individual nanoparticle is approximated by a macrospin. Vinamax numerically solves the Landau-Lifshitz equation by adopting a dipole approximation method, while temperature effects can be taken into account with two stochastic methods. It describes the influence of demagnetizing and anisotropy fields on magnetic nanoparticles at finite temperatures in a space- and time-dependent externally applied field. Vinamax can be used in biomedical research where nanoparticle imaging techniques are under development, e.g., to validate other higher-level models and study their limitations.
Assuntos
Campos Magnéticos , Magnetismo/métodos , Nanopartículas de Magnetita/química , Modelos Teóricos , Software , Simulação por Computador , Nanotecnologia , Tamanho da PartículaRESUMO
Micron-sized magnetic platelets in the flux-closed vortex state are characterized by an in-plane curling magnetization and a nanometer-sized perpendicularly magnetized vortex core. Having the simplest non-trivial configuration, these objects are of general interest to micromagnetics and may offer new routes for spintronics applications. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling by excitation of the gyrotropic eigenmode at sub-GHz frequencies was established. At frequencies more than an order of magnitude higher vortex state structures possess spin wave eigenmodes arising from the magneto-static interaction. Here we demonstrate experimentally that the unidirectional vortex core reversal process also occurs when such azimuthal modes are excited. These results are confirmed by micromagnetic simulations, which clearly show the selection rules for this novel reversal mechanism. Our analysis reveals that for spin-wave excitation the concept of a critical velocity as the switching condition has to be modified.
Assuntos
Campos Eletromagnéticos , Modelos Teóricos , Nanotecnologia/métodos , Simulação por Computador , Compostos Férricos , Dinâmica não LinearRESUMO
The response of magnetic vortex cores to subnanosecond in-plane magnetic field pulses was studied by time-resolved x-ray microscopy. Vortex core reversal was observed and the switching events were located in space and time. This revealed a mechanism of coherent excitation by the leading and trailing edges of the pulse, lowering the field amplitude required for switching. The mechanism was confirmed by micromagnetic simulations and can be understood in terms of gyration around the vortex equilibrium positions, displaced by the applied field.
RESUMO
Time-resolved x-ray microscopy is used to image the influence of alternating high-density currents on the magnetization dynamics of ferromagnetic vortices. Spin-torque-induced vortex gyration is observed in micrometer-sized permalloy squares. The phases of the gyration in structures with different chirality are compared to an analytical model and micromagnetic simulations, considering both alternating spin-polarized currents and the current's Oersted field. In our case the driving force due to spin-transfer torque is about 70% of the total excitation while the remainder originates from the current's Oersted field. This finding has implications to magnetic storage devices using spin-torque driven magnetization switching and domain-wall motion.
RESUMO
We report on the observation of magnetic vortex dynamics in response to rotating magnetic fields in submicron platelets. Unlike linear fields or spin polarized currents, which excite both vortex core polarization states, an in-plane rotating field can selectively excite one of the polarization states. We demonstrate by direct imaging with time-resolved scanning x-ray microscopy that the rotating field only excites the gyrotropic mode if the rotation sense of the field coincides with the vortex gyration sense and that such a field can selectively reverse the vortex polarization.