Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 892315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072345

RESUMO

Maternal obesity (MO) induces negative consequences in the offspring development. Adiposity phenotype is associated with maternal diet at early pregnancy and DNA methylation marks in the RXRα promotor at birth. Glucocorticoids play an important role in the regulation of metabolism through the activation of nuclear hormone receptors such as the RXRα protein. The aim of the study was to analyze steroid hormone changes at the end of pregnancy in the obese mother and RXRα gene methylation in the umbilical cord. For this purpose, in a well-established MO model, female Wistar rats were fed either standard chow (controls: C) or high-fat obesogenic diet (MO) before and during pregnancy to evaluate at 19 days of gestation (19 dG): 1) maternal concentration of circulating steroid hormones in MO and C groups, 2) maternal and fetal weights, 3) analysis of correlation between hormones concentration and maternal and fetal weights, 4) DNA methylation status of a single locus of RXRα gene near the early growth response (EGR-1) protein DNA binding site, and 5) RXRα mRNA and protein expressions in umbilical cords. Our results demonstrate that at 19 dG, MO body weight before and during pregnancy was higher than C; MO progesterone and corticosterone serum concentrations were higher and estradiol lower than C. There were not differences in fetal weight between male and female per group, therefore averaged data was used; MO fetal weight was lower than C. Positive correlations were found between progesterone and corticosterone with maternal weight, and estradiol with fetal weight, while negative correlation was observed between corticosterone and fetal weight. Additionally, male umbilical cords from MO were hypermethylated in RXRα gene compared to male C group, without differences in the female groups; mRNA and protein expression of RXRα were decreased in F1 male but not in female MO compared to C. In conclusion, MO results in dysregulation of circulating steroid hormones of the obese mothers and low fetal weight in the F1, modifying DNA methylation of RXRα gene as well as RXRα mRNA and protein expression in the umbilical cord in a sex-dependent manner.

2.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290594

RESUMO

Maternal obesity (MO) causes maternal and fetal oxidative stress (OS) and metabolic dysfunction. We investigated whether supplementing obese mothers with resveratrol improves maternal metabolic alterations and reduces OS in the placenta and maternal and fetal liver. From weaning through pregnancy female Wistar rats ate chow (C) or a high-fat diet (MO). One month before mating until 19 days' gestation (dG), half the rats received 20 mg resveratrol/kg/d orally (Cres and MOres). At 19dG, maternal body weight, retroperitoneal fat adipocyte size, metabolic parameters, and OS biomarkers in the placenta and liver were determined. MO mothers showed higher body weight, triglycerides and leptin serum concentrations, insulin resistance (IR), decreased small and increased large adipocytes, liver fat accumulation, and hepatic upregulation of genes related to IR and inflammatory processes. Placenta, maternal and fetal liver OS biomarkers were augmented in MO. MOres mothers showed more small and fewer large adipocytes, lower triglycerides serum concentrations, IR and liver fat accumulation, downregulation of genes related to IR and inflammatory processes, and lowered OS in mothers, placentas, and female fetal liver. Maternal resveratrol supplementation in obese rats improves maternal metabolism and reduces placental and liver OS of mothers and fetuses in a sex-dependent manner.

3.
Exp Gerontol ; 154: 111511, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371097

RESUMO

Maternal obesity (MO) leads to offspring metabolic problems. The mechanisms involved are multifactorial. The small intestine plays an important role in the absorption of nutrients and is modified as we age. Few studies have explored MO programming effects on offspring (F1) small intestine morphology. The aim of this study was to investigate MO effects on old adult F1 intestinal morphology, and whether any F1 intestinal changes due to MO were modified by maternal resveratrol supplementation. From weaning throughout pregnancy and lactation, female Wistar rats (F0) ate standard chow (controls, C: 5%-fat) or high-fat diet (MO: 25%-fat). One month before mating at postnatal day (PND) 120 through lactation half of each group received 20 mg/kg/day of resveratrol orally (Cres or MOres). After weaning F1 were fed with chow diet until the end of the study at PND 650. Body weight, percent of fat, glucose, cholesterol and triglyceride serum concentrations were determined. F1 small intestinal samples were collected for histological analysis. Male F1 body weight was higher in MO and MOres compared with C and Cres. Female F1 body weight and percent of fat was higher in MO than C and MOres. Triglyceride concentrations were higher in MO and MOres male F1 compared with C and Cres. There were no differences among groups in female triglyceride concentrations. Male F1 duodenal villus height was smaller in MO compared with MOres. Female F1 duodenal and jejunal crypt depth was smaller in MO compared with C and was greater compared with MOres. Female F1 villus height in jejunum was greater in MO compared with MOres. In conclusion, exposure to the developmental challenge of MO changed the aged F1 intestinal morphological and metabolic profiles. Maternal resveratrol supplementation ameliorated these effects in an F1 sex dependent manner.


Assuntos
Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Dieta Hiperlipídica , Suplementos Nutricionais , Feminino , Humanos , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Ratos , Ratos Wistar , Resveratrol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA