Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 98(4): 2676-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25660738

RESUMO

The objective of this study was to measure enteric CH4 emissions using a new portable automated open-circuit gas quantification system (GQS) and the sulfur hexafluoride tracer technique (SF6) in midlactation Holstein cows housed in a tiestall barn. Sixteen cows averaging 176 ± 34 d in milk, 40.7 ± 6.1 kg of milk yield, and 685 ± 49 kg of body weight were randomly assigned to 1 out of 2 treatments according to a crossover design. Treatments were (1) ad libitum (adjusted daily to yield 10% orts) and (2) restricted feed intake [set to restrict feed by 10% of baseline dry matter intake (DMI)]. Each experimental period lasted 22d, with 14 d for treatment adaptation and 8d for data and sample collection. A common diet was fed to the cows as a total mixed ration and contained 40.4% corn silage, 11.2% grass-legume haylage, and 48.4% concentrate on a dry matter basis. Spot 5-min measurements using the GQS were taken twice daily with a 12-h interval between sampling and sampling times advanced 2h daily to account for diurnal variation in CH4 emissions. Canisters for the SF6 method were sampled twice daily before milking with 4 local background gas canisters inside the barn analyzed for background gas concentrations. Enteric CH4 emissions were not affected by treatments and averaged 472 and 458 g/d (standard error of the mean = 18 g/d) for ad libitum and restricted intake treatments, respectively (data not shown). The GQS appears to be a reliable method because of the relatively low coefficients of variation (ranging from 14.1 to 22.4%) for CH4 emissions and a moderate relationship (coefficient of determination = 0.42) between CH4 emissions and DMI. The SF6 resulted in large coefficients of variation (ranging from 16.0 to 111%) for CH4 emissions and a poor relationship (coefficient of determination = 0.17) between CH4 emissions and DMI, likely because of limited barn ventilation and high background gas concentration. Research with improved barn ventilation systems or outdoors is warranted to further assess the GQS and SF6 methodologies.


Assuntos
Poluentes Atmosféricos/análise , Bovinos/metabolismo , Indústria de Laticínios , Monitoramento Ambiental/métodos , Metano/análise , Animais , Feminino , Hexafluoreto de Enxofre/análise
2.
Glob Chang Biol ; 20(8): 2674-86, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24616169

RESUMO

Controls on the fate of ~277 Pg of soil organic carbon (C) stored in permafrost peatland soils remain poorly understood despite the potential for a significant positive feedback to climate change. Our objective was to quantify the temperature, moisture, organic matter, and microbial controls on soil organic carbon (SOC) losses following permafrost thaw in peat soils across Alaska. We compared the carbon dioxide (CO2 ) and methane (CH4 ) emissions from peat samples collected at active layer and permafrost depths when incubated aerobically and anaerobically at -5, -0.5, +4, and +20 °C. Temperature had a strong, positive effect on C emissions; global warming potential (GWP) was >3× larger at 20 °C than at 4 °C. Anaerobic conditions significantly reduced CO2 emissions and GWP by 47% at 20 °C but did not have a significant effect at -0.5 °C. Net anaerobic CH4 production over 30 days was 7.1 ± 2.8 µg CH4 -C gC(-1) at 20 °C. Cumulative CO2 emissions were related to organic matter chemistry and best predicted by the relative abundance of polysaccharides and proteins (R(2) = 0.81) in SOC. Carbon emissions (CO2 -C + CH4 -C) from the active layer depth peat ranged from 77% larger to not significantly different than permafrost depths and varied depending on the peat type and peat decomposition stage rather than thermal state. Potential SOC losses with warming depend not only on the magnitude of temperature increase and hydrology but also organic matter quality, permafrost history, and vegetation dynamics, which will ultimately determine net radiative forcing due to permafrost thaw.


Assuntos
Dióxido de Carbono/análise , Metano/análise , Solo/química , Alaska , Carbono/análise , Nitrogênio/análise , Microbiologia do Solo , Temperatura , Água
3.
Appl Environ Microbiol ; 67(12): 5437-43, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11722890

RESUMO

Pure cultures of methylotrophs and methanotrophs are known to oxidize methyl bromide (MeBr); however, their ability to oxidize tropospheric concentrations (parts per trillion by volume [pptv]) has not been tested. Methylotrophs and methanotrophs were able to consume MeBr provided at levels that mimicked the tropospheric mixing ratio of MeBr (12 pptv) at equilibrium with surface waters ( approximately 2 pM). Kinetic investigations using picomolar concentrations of MeBr in a continuously stirred tank reactor (CSTR) were performed using strain IMB-1 and Leisingeria methylohalidivorans strain MB2(T) - terrestrial and marine methylotrophs capable of halorespiration. First-order uptake of MeBr with no indication of threshold was observed for both strains. Strain MB2(T) displayed saturation kinetics in batch experiments using micromolar MeBr concentrations, with an apparent K(s) of 2.4 microM MeBr and a V(max) of 1.6 nmol h(-1) (10(6) cells)(-1). Apparent first-order degradation rate constants measured with the CSTR were consistent with kinetic parameters determined in batch experiments, which used 35- to 1 x 10(7)-fold-higher MeBr concentrations. Ruegeria algicola (a phylogenetic relative of strain MB2(T)), the common heterotrophs Escherichia coli and Bacillus pumilus, and a toluene oxidizer, Pseudomonas mendocina KR1, were also tested. These bacteria showed no significant consumption of 12 pptv MeBr; thus, the ability to consume ambient mixing ratios of MeBr was limited to C(1) compound-oxidizing bacteria in this study. Aerobic C(1) bacteria may provide model organisms for the biological oxidation of tropospheric MeBr in soils and waters.


Assuntos
Atmosfera/química , Bactérias/metabolismo , Hidrocarbonetos Bromados/metabolismo , Microbiologia do Solo , Bactérias/crescimento & desenvolvimento , Meios de Cultura , Metano/metabolismo , Oxirredução , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA