Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Dairy Sci ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39265834

RESUMO

Third-generation cephalosporins such as ceftiofur are critically important antibiotics because human pathogens with resistance to these drugs contribute to high mortality rates. These antibiotics are also frequently given to dairy cattle for treating infections, emphasizing the critical role they play in both human and veterinary medicine. To investigate the impact of intramuscular ceftiofur treatment on the concentration of resistant bacteria in the gut, we focused on cows with metritis, a common bacterial infection that frequently requires antibiotic intervention. Twelve cows with metritis (cases) were enrolled and treated with intramuscular ceftiofur for 5 d along with 12 matched healthy cows that were not given ceftiofur (controls). Fecal samples were collected weekly from cows in both the case and control groups for 4 weeks, starting before the treatment of the case group. Five fecal samples per cow were used for analysis (n = 120 samples). The abundance of Gram-negative bacteria was quantified per sample after plating on MacConkey agar, which was also used to quantify the abundance of Gram-negative bacteria with resistance to ceftiofur, ampicillin, and tetracycline. Interestingly, the case cows with metritis had a greater abundance of Gram-negative bacteria than the control cows just before treatment, but no difference in abundance was observed between groups at wk 1-4. The abundance of ceftiofur-resistant Gram-negative bacteria was also similar between the case and control cows immediately before treatment of the cases. However, a significant increase in abundance of ceftiofur-resistant Gram-negative bacteria was observed in the case cows 1-week after treatment that persisted through wk 3. Although the recovery of ampicillin- and tetracycline-resistant bacteria was similar between the 2 groups post-treatment, cases had significantly higher levels of ampicillin-resistant bacteria before treatment. Collectively, these findings demonstrate that intramuscular ceftiofur treatment can affect the abundance of cultivable Gram-negative bacteria and select for ceftiofur-resistant populations that can persist for up to 3 weeks. Judicious use practices are needed to ensure that ceftiofur and other critically important antibiotics are administered only when necessary to minimize the spread of resistance and safeguard public and animal health.

2.
Appl Environ Microbiol ; 82(14): 4218-4224, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208122

RESUMO

UNLABELLED: Animals are important reservoirs of zoonotic enteropathogens, and transmission to humans occurs more frequently in low- and middle-income countries (LMICs), where small-scale livestock production is common. In this study, we investigated the presence of zoonotic enteropathogens in stool samples from 64 asymptomatic children and 203 domestic animals of 62 households in a semirural community in Ecuador between June and August 2014. Multilocus sequence typing (MLST) was used to assess zoonotic transmission of Campylobacter jejuni and atypical enteropathogenic Escherichia coli (aEPEC), which were the most prevalent bacterial pathogens in children and domestic animals (30.7% and 10.5%, respectively). Four sequence types (STs) of C. jejuni and four STs of aEPEC were identical between children and domestic animals. The apparent sources of human infection were chickens, dogs, guinea pigs, and rabbits for C. jejuni and pigs, dogs, and chickens for aEPEC. Other pathogens detected in children and domestic animals were Giardia lamblia (13.1%), Cryptosporidium parvum (1.1%), and Shiga toxin-producing E. coli (STEC) (2.6%). Salmonella enterica was detected in 5 dogs and Yersinia enterocolitica was identified in 1 pig. Even though we identified 7 enteric pathogens in children, we encountered evidence of active transmission between domestic animals and humans only for C. jejuni and aEPEC. We also found evidence that C. jejuni strains from chickens were more likely to be transmitted to humans than those coming from other domestic animals. Our findings demonstrate the complex nature of enteropathogen transmission between domestic animals and humans and stress the need for further studies. IMPORTANCE: We found evidence that Campylobacter jejuni, Giardia, and aEPEC organisms were the most common zoonotic enteropathogens in children and domestic animals in a region close to Quito, the capital of Ecuador. Genetic analysis of the isolates suggests transmission of some genotypes of C. jejuni and aEPEC from domestic animals to humans in this region. We also found that the genotypes associated with C. jejuni from chickens were present more often in children than were those from other domestic animals. The potential environmental factors associated with transmission of these pathogens to humans then are discussed.


Assuntos
Infecções Bacterianas/epidemiologia , Infecções Bacterianas/veterinária , Fezes/microbiologia , Fezes/parasitologia , Doenças Parasitárias em Animais/epidemiologia , Doenças Parasitárias/epidemiologia , Zoonoses/epidemiologia , Animais , Infecções Bacterianas/microbiologia , Campylobacter/isolamento & purificação , Galinhas , Criança , Pré-Escolar , Cryptosporidium parvum/isolamento & purificação , Transmissão de Doença Infecciosa , Cães , Equador , Enterobacteriaceae/isolamento & purificação , Feminino , Giardia lamblia/isolamento & purificação , Cobaias , Voluntários Saudáveis , Humanos , Lactente , Masculino , Doenças Parasitárias/parasitologia , Doenças Parasitárias em Animais/parasitologia , Prevalência , Coelhos , População Suburbana , Zoonoses/microbiologia , Zoonoses/parasitologia
3.
Front Mol Biosci ; 11: 1364637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836107

RESUMO

The gut microbiota in cattle is essential for protein, energy, and vitamin production and hence, microbiota perturbations can affect cattle performance. This study evaluated the effect of intramammary (IMM) ceftiofur treatment and lactation stage on the functional gut microbiome and metabolome. Forty dairy cows were enrolled at dry-off. Half received IMM ceftiofur and a non-antibiotic teat sealant containing bismuth subnitrate (cases), while the other half received the teat sealant (controls). Fecal samples were collected before treatment at dry off, during the dry period (weeks 1 and 5) and the first week after calving (week 9). Shotgun metagenomic sequencing was applied to predict microbial metabolic pathways whereas untargeted metabolomics was used identify polar and nonpolar metabolites. Compared to controls, long-term changes were observed in the cows given ceftiofur, including a lower abundance of microbial pathways linked to energy production, amino acid biosynthesis, and other vital molecules. The metabolome of treated cows had elevated levels of stachyose, phosphatidylethanolamine diacylglycerol (PE-DAG), and inosine a week after the IMM ceftiofur application, indicating alterations in microbial fermentation, lipid metabolism, energy, and cellular signaling. Differences were also observed by sampling, with cows in late lactation having more diverse metabolic pathways and a unique metabolome containing higher levels of histamine and histamine-producing bacteria. These data illustrate how IMM ceftiofur treatment can alter the functionality of the hindgut metabolome and microbiome. Understanding how antibiotics and lactation stages, which are each characterized by unique diets and physiology, impact the function of resident microbes is critical to define normal gut function in dairy cattle.

4.
Front Cell Infect Microbiol ; 14: 1359576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779558

RESUMO

While enteric pathogens have been widely studied for their roles in causing foodborne infection, their impacts on the gut microbial community have yet to be fully characterized. Previous work has identified notable changes in the gut microbiome related to pathogen invasion, both taxonomically and genetically. Characterization of the metabolic landscape during and after enteric infection, however, has not been explored. Consequently, we investigated the metabolome of paired stools recovered from 60 patients (cases) during and after recovery from enteric bacterial infections (follow-ups). Shotgun metagenomics was applied to predict functional microbial pathways combined with untargeted metametabolomics classified by Liquid Chromatography Mass Spectrometry. Notably, cases had a greater overall metabolic capacity with significantly higher pathway richness and evenness relative to the follow-ups (p<0.05). Metabolic pathways related to central carbon metabolism, amino acid metabolism, and lipid and fatty acid biosynthesis were more highly represented in cases and distinct signatures for menaquinone production were detected. By contrast, the follow-up samples had a more diverse metabolic landscape with enhanced richness of polar metabolites (p<0.0001) and significantly greater richness, evenness, and overall diversity of nonpolar metabolites (p<0.0001). Although many metabolites could not be annotated with existing databases, a marked increase in certain clusters of metabolites was observed in the follow-up samples when compared to the case samples and vice versa. These findings suggest the importance of key metabolites in gut health and recovery and enhance understanding of metabolic fluctuations during enteric infections.


Assuntos
Fezes , Microbioma Gastrointestinal , Metaboloma , Metagenômica , Humanos , Fezes/microbiologia , Fezes/química , Metagenômica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Redes e Vias Metabólicas , Adulto , Metabolômica , Idoso , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Adulto Jovem
5.
Sci Rep ; 13(1): 15524, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726374

RESUMO

Enteric pathogens cause widespread foodborne illness and are increasingly resistant to important antibiotics yet their ecological impact on the gut microbiome and resistome is not fully understood. Herein, shotgun metagenome sequencing was applied to stool DNA from 60 patients (cases) during an enteric bacterial infection and after recovery (follow-ups). Overall, the case samples harbored more antimicrobial resistance genes (ARGs) with greater resistome diversity than the follow-up samples (p < 0.001), while follow-ups had more diverse gut microbiota (p < 0.001). Although cases were primarily defined by genera Escherichia, Salmonella, and Shigella along with ARGs for multi-compound and multidrug resistance, follow-ups had a greater abundance of Bacteroidetes and Firmicutes phyla and resistance genes for tetracyclines, macrolides, lincosamides, and streptogramins, and aminoglycosides. A host-tracking analysis revealed that Escherichia was the primary bacterial host of ARGs in both cases and follow-ups, with a greater abundance occurring during infection. Eleven distinct extended spectrum beta-lactamase (ESBL) genes were identified during infection, with some detectable upon recovery, highlighting the potential for gene transfer within the community. Because of the increasing incidence of disease caused by foodborne pathogens and their role in harboring and transferring resistance determinants, this study enhances our understanding of how enteric infections impact human gut ecology.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Humanos , Antibacterianos/farmacologia , Microbioma Gastrointestinal/genética , Farmacorresistência Bacteriana/genética , Aminoglicosídeos
6.
ACS Cent Sci ; 9(9): 1737-1749, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37780357

RESUMO

Preterm birth affects nearly 10% of all pregnancies in the United States, with 40% of those due, in part, to infections. Streptococcus agalactiae (Group B Streptococcus, GBS) is one of the most common perinatal pathogens responsible for these infections. Current therapeutic techniques aimed to ameliorate invasive GBS infections are less than desirable and can result in complications in both the neonate and the mother. To this end, the need for novel therapeutic options is urgent. Human milk oligosaccharides (HMOs), an integral component of human breast milk, have been previously shown to possess antiadhesive and antimicrobial properties. To interrogate these characteristics, we examined HMO-mediated outcomes in both in vivo and ex vivo models of GBS infection utilizing a murine model of ascending GBS infection, an EpiVaginal human organoid tissue model, and ex vivo human gestational membranes. Supplementation of HMOs resulted in diminished adverse pregnancy outcomes, decreased GBS adherence to gestational tissues, decreased colonization within the reproductive tract, and reduced proinflammatory immune responses to GBS infection. Taken together, these results highlight the potential of HMOs as promising therapeutic interventions in perinatal health.

7.
Anim Microbiome ; 5(1): 56, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946266

RESUMO

BACKGROUND: Intramammary (IMM) ceftiofur treatment is commonly used in dairy farms to prevent mastitis, though its impact on the cattle gut microbiome and selection of antibiotic-resistant bacteria has not been elucidated. Herein, we enrolled 40 dairy (Holstein) cows at the end of the lactation phase for dry-cow therapy: 20 were treated with IMM ceftiofur (Spectramast®DC) and a non-antibiotic internal teat sealant (bismuth subnitrate) and 20 (controls) received only bismuth subnitrate. Fecal grab samples were collected before and after treatment (weeks 1, 2, 3, 5, 7, and 9) for bacterial quantification and metagenomic next-generation sequencing. RESULTS: Overall, 90% and 24% of the 278 samples had Gram-negative bacteria with resistance to ampicillin and ceftiofur, respectively. Most of the cows treated with ceftiofur did not have an increase in the number of resistant bacteria; however, a subset (25%) shed higher levels of ceftiofur-resistant bacteria for up to 2 weeks post-treatment. At week 5, the antibiotic-treated cows had lower microbiota abundance and richness, whereas a greater abundance of genes encoding extended-spectrum ß-lactamases (ESBLs), CfxA, ACI-1, and CMY, was observed at weeks 1, 5 and 9. Moreover, the contig and network analyses detected associations between ß-lactam resistance genes and phages, mobile genetic elements, and specific genera. Commensal bacterial populations belonging to Bacteroidetes most commonly possessed ESBL genes followed by members of Enterobacteriaceae. CONCLUSION: This study highlights variable, persistent effects of IMM ceftiofur treatment on the gut microbiome and resistome in dairy cattle. Antibiotic-treated cattle had an increased abundance of specific taxa and genes encoding ESBL production that persisted for 9 weeks. Fecal shedding of ESBL-producing Enterobacteriaceae, which was classified as a serious public health threat, varied across animals. Together, these findings highlight the need for additional studies aimed at identifying factors associated with shedding levels and the dissemination and persistence of antibiotic resistance determinants on dairy farms across geographic locations.

8.
Anim Microbiome ; 4(1): 65, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517909

RESUMO

BACKGROUND: Understanding the natural microbiome and resistome of wildlife from remote places is necessary to monitor the human footprint on the environment including antimicrobial use (AU). Marine iguanas are endemic species from the Galapagos Islands where they are highly affected by anthropogenic factors that can alter their microbiota as well as their abundance and diversity of antimicrobial-resistant genes (ARGs). Thus, this study aims to apply culture-independent approaches to characterize the marine iguana's gut metagenomic composition of samples collected from the uninhabited islands Rabida (n = 8) and Fernandina (Cabo Douglas, n = 30; Punta Espinoza, n = 30). Fresh feces from marine iguanas were analyzed through SmartChip RT-PCR, 16S rRNA, and metagenomic next-generation sequencing (mNGS) to identify their microbiome, microbial-metabolic pathways, resistome, mobilome, and virulome. RESULTS: The marine iguana's gut microbiome composition was highly conserved despite differences in ecological niches, where 86% of taxa were shared in the three locations. However, site-specific differences were mainly identified in resistome, mobilome, virulorome, and metabolic pathway composition, highlighting the existence of factors that induce microbial adaptations in each location. Functional gut microbiome analyses revealed its role in the biosynthesis and degradation of vitamins, cofactors, proteinogenic amino acids, carbohydrates, nucleosides and nucleotides, fatty acids, lipids, and other compounds necessary for the marine iguanas. The overall bacterial ARG abundance was relatively low (0.006%); nevertheless, the presence of genes encoding resistance to 22 drug classes was identified in the iguana's gut metagenome. ARG-carrying contig and co-occurrence network analyses revealed that commensal bacteria are the main hosts of ARGs. Taxa of public health interest such as Salmonella, Vibrio, and Klebsiella also carried multidrug-resistance genes associated with MGEs which can influence the dissemination of ARGs through horizontal gene transfer. CONCLUSION: Marine iguanas depend on the gut microbiome for the biosynthesis and degradation of several compounds through a symbiotic relationship. Niche-specific adaptations were evidenced in the pool of microbial accessory genes (i.e., ARGs, MGEs, and virulence) and metabolic pathways, but not in the microbiome composition. Culture-independent approaches outlined the presence of a diverse resistome composition in the Galapagos marine iguanas from remote islands. The presence of AR pathogens in marine iguanas raises concerns about the dispersion of microbial-resistant threats in pristine areas, highlighting wildlife as sentinel species to identify the impact of AU.

9.
Sci Adv ; 8(27): eabm5982, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857449

RESUMO

Recent adaptive radiations are models for investigating mechanisms contributing to the evolution of biodiversity. An unresolved question is the relative importance of new mutations, ancestral variants, and introgressive hybridization for phenotypic evolution and speciation. Here, we address this issue using Darwin's finches and investigate the genomic architecture underlying their phenotypic diversity. Admixture mapping for beak and body size in the small, medium, and large ground finches revealed 28 loci showing strong genetic differentiation. These loci represent ancestral haplotype blocks with origins predating speciation events during the Darwin's finch radiation. Genes expressed in the developing beak are overrepresented in these genomic regions. Ancestral haplotypes constitute genetic modules for selection and act as key determinants of the unusual phenotypic diversity of Darwin's finches. Such ancestral haplotype blocks can be critical for how species adapt to environmental variability and change.


Assuntos
Tentilhões , Passeriformes , Animais , Bico , Tentilhões/genética , Genômica , Haplótipos
10.
Microorganisms ; 9(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34442815

RESUMO

Cattle are the main reservoirs of Shiga toxin producing Escherichia coli (STEC), a major foodborne pathogen associated with acute enteric disease and hemolytic-uremic syndrome in humans. A total of 397 beef and dairy cattle from 5 farms were included in this study, of which 660 samples were collected for 16S rRNA gene sequencing. The microbiota of farms with a high-STEC prevalence (HSP) had greater richness compared to those of farms with a low-STEC prevalence (LSP). Longitudinal analyses showed STEC-shedders from LSP farms had higher microbiome diversity; meanwhile, changes in the microbiome composition in HSP farms were independent of the STEC shedding status. Most of the bacterial genera associated with STEC shedding in dairy farms were also correlated with differences in the percentage of forage in diet and risk factors of STEC carriage such as days in milk, number of lactations, and warm temperatures. Identifying factors that alter the gut microbiota and enable STEC colonization in livestock could lead to novel strategies to prevent fecal shedding and the subsequent transmission to humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA