Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 258: 121744, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754301

RESUMO

Replacing petroleum-based plastics with biodegradable polymers is a major challenge for modern society especially for food packaging applications. To date, poly(lactic acid) represents 25 % of the total biodegradable plastics and it is estimated that, in the future, it could become the main contributor to the biodegradable plastics industry. Anaerobic digestion is an interesting way for the poly(lactic acid) end of life, even if its biodegradability is limited in mesophilic conditions. The aims of this study were to identify the best pre-treatment for maximizing the methane yield, minimizing the anaerobic digestion duration and limiting residual plastic fragments in the digestate. A systematic comparison was carried out between thermal, chemical, and thermo-chemical pre-treatment. Pre-treatment with 4 M KOH for 48 h at 35°C was effective in improving the mesophilic anaerobic digestion of the poly(lactic acid). Such pre-treatment allows obtaining 90 % of the theoretical methane potential, in 24 - 30 days. Importantly, such pre-treatment completely solubilized the poly(lactic acid), leaving no solid residues in the digestate. In addition, using KOH permits to avoid the sodication of the soil due to the digestate application as fertilizer.


Assuntos
Poliésteres , Poliésteres/química , Anaerobiose , Polímeros/química , Metano/metabolismo , Ácido Láctico/metabolismo , Álcalis/química , Hidróxidos/química , Compostos de Potássio/química , Biodegradação Ambiental , Temperatura
2.
Chemosphere ; 297: 133986, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35176299

RESUMO

To date, the introduction of biodegradable plastics such as PLA in anaerobic digestion systems has been limited by a very low rate of biodegradation. To overcome these limitations, pretreatment technologies can be applied. In this study, the impact of pretreatments (mechanical, thermal, thermo-acid, and thermo-alkaline) was investigated. Mechanical pretreatment of PLA improved its biodegradation rate but did not affect the ultimate methane potential (430-461 NL CH4 kg-1 VS). In parallel, thermal and thermo-acid pretreatments exhibited a similar trend for PLA solubilization. Both of these pretreatments only achieved substantial solubilization (>60%) at higher temperatures (120 and 150 °C). At lower temperatures (70 and 90 °C), negligible solubilization (between 1 and 6%) occurred after 48 h. By contrast, coupling of thermal and alkaline pretreatment significantly increased solubilization at the lower temperatures (70 and 90 °C). In terms of biodegradation, thermo-alkaline pretreatment (with 5% w/v Ca(OH)2) of PLA resulted in a similar methane potential (from 325 to 390 NL CH4 kg-1 VS) for 1 h at 150 °C, 6 h at 120 °C, 24 h at 90 °C, and 48 h at 70 °C. Reduction of the Ca(OH)2 concentration (from 5% to 0.5% w/v) highlighted that a concentration of 2.5% w/v was sufficient to achieve a substantial level of biodegradation. Pretreatment at 70 and 90 °C using 2.5% w/v Ca(OH)2 for 48 h resulted in biodegradation yields of 73% and 68%, respectively. Finally, a good correlation (R2 = 0.90) was found between the PLA solubilization and its biodegradation.


Assuntos
Metano , Poliésteres , Anaerobiose , Biodegradação Ambiental , Metano/metabolismo , Poliésteres/metabolismo , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA