Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Neurobiol ; 61(8): 5754-5770, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38228842

RESUMO

The iPSC-derived 3D models are considered to be a connective link between 2D culture and in vivo studies. However, the sensitivity of such 3D models is yet to be established. We assessed the sensitivity of the hiPSC-derived 3D spheroids against 2D cultures of neural progenitor cells. The sub-toxic dose of Sodium Arsenite (SA) was used to investigate the alterations in miRNA-proteins in both systems. Though SA exposure induced significant alterations in the proteins in both 2D and 3D systems, these proteins were uncommon except for 20 proteins. The number and magnitude of altered proteins were higher in the 2D system compared to 3D. The association of dysregulated miRNAs with the target proteins showed their involvement primarily in mitochondrial bioenergetics, oxidative and ER stress, transcription and translation mechanism, cytostructure, etc., in both culture systems. Further, the impact of dysregulated miRNAs and associated proteins on these functions and ultrastructural changes was compared in both culture systems. The ultrastructural studies revealed a similar pattern of mitochondrial damage, while the cellular bioenergetics studies confirm a significantly higher energy failure in the 2D system than to 3D. Such a higher magnitude of changes could be correlated with a higher amount of internalization of SA in 2D cultures than in 3D spheroids. Our findings demonstrate that a 2D culture system seems better responsive than a 3D spheroid system against SA exposure.


Assuntos
Arsênio , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Células-Tronco Neurais , Proteômica , Esferoides Celulares , Humanos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Proteômica/métodos , Arsênio/toxicidade , Técnicas de Cultura de Células/métodos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células Cultivadas
2.
Indian J Pharmacol ; 55(2): 108-118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313936

RESUMO

BACKGROUND AND OBJECTIVES: Induced pluripotent stem cells (iPSCs) derived three-dimensional (3D) model for rare neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) is emerging as a novel alternative to human diseased tissue to explore the disease etiology and potential drug discovery. In the interest of the same, we have generated a TDP-43-mutated human iPSCs (hiPSCs) derived 3D organoid model of ALS disease. The high-resolution mass spectrometry (MS)-based proteomic approach is used to explore the differential mechanism under disease conditions and the suitability of a 3D model to study the disease. MATERIALS AND METHODS: The hiPSCs cell line was procured from a commercial source, grown, and characterized following standard protocols. The mutation in hiPSCs was accomplished using CRISPR/Cas-9 technology and predesigned gRNA. The two groups of organoids were produced by normal and mutated hiPSCs and subjected to the whole proteomic profiling by high-resolution MS in two biological replicates with three technical replicas of each. RESULTS: The proteomic analysis of normal and mutated organoids revealed the proteins associated with pathways of neurodegenerative disorders, proteasomes, autophagy, and hypoxia-inducible factor-1 signaling. Differential proteomic analysis revealed that the mutation in TDP-43 gene caused proteomic deregulation, which impaired protein quality mechanisms. Furthermore, this impairment may contribute to the generation of stress conditions that may ultimately lead to the development of ALS pathology. CONCLUSION: The developed 3D model represents the majority of candidate proteins and associated biological mechanisms altered in ALS disease. The study also offers novel protein targets that may uncloud the precise disease pathological mechanism and be considered for future diagnostic and therapeutic purposes for various neurodegenerative disorders.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Proteoma , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Proteômica , Diagnóstico Precoce , Proteínas de Ligação a DNA , Organoides
3.
Mol Neurobiol ; 59(1): 459-474, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34714469

RESUMO

Mesenchymal stem cells (MSCs) are multipotent, adult stem cells which are found in numerous tissues like the umbilical cord, Wharton's jelly, bone marrow, and adipose tissue. They possess the capacity of self-renewal by dividing and differentiating into various cellular lineages. Their characteristic therapeutic potential exploited so far has made them a desirable candidate in regenerative medicine. Neurodegenerative diseases (NDs) like Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and ischemic stroke have been treated with MSCs and MSC-derived products. Over the past few decades, we have witnessed significant contributions in discovering the etiology of various NDs and their possible therapeutic solutions. One of the MSC-based therapeutics is extracellular vesicles (EVs), which contain multiple biologically active molecules like nucleic acids and proteins. The contents of EVs are ferried between cells for intercellular communication which then leads to regulation of the homeostasis of recipient cells. EVs serve as a considerable means of cell-free therapies like for tissue repair or regeneration as EVs can maintain therapeutically effective cargo of parent cells and are free of various ethical issues in cell-based therapies. Due to paucity of standard protocols in extraction procedures of EVs and their pharmacological properties and mechanisms, the development of new EV dependent therapies is challenging. With this review, an attempt has been made to annotate these mechanisms, which can help advance the novel therapeutic approaches towards the treat and define a more narrowed down approach for each ND to devise effective MSC-based therapies to cure and avert these diseases.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doenças Neurodegenerativas/terapia , Medicina Regenerativa/métodos , Animais , Humanos , Doenças Neurodegenerativas/metabolismo
4.
J Exp Bot ; 59(15): 4259-70, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19015217

RESUMO

The pathogenicity of various Streptomyces scabies isolates involved in potato scab disease was correlated with the production of thaxtomin A. Since calcium is known as an essential second messenger associated with pathogen-induced plant responses and cell death, it was investigated whether thaxtomin A could induce a Ca2+ influx related to cell death and to other putative plant responses using Arabidopsis thaliana suspension cells, which is a convenient model to study plant-microbe interactions. A. thaliana cells were treated with micromolar concentrations of thaxtomin A. Cell death was quantified and ion flux variations were analysed from electrophysiological measurements with the apoaequorin Ca2+ reporter protein and by external pH measurement. Involvement of anion and calcium channels in signal transduction leading to programmed cell death was determined by using specific inhibitors. These data suggest that this toxin induces a rapid Ca2+ influx and cell death in A. thaliana cell suspensions. Moreover, these data provide strong evidence that the Ca2+ influx induced by thaxtomin A is necessary to achieve this cell death and is a prerequisite to early thaxtomin A-induced responses: anion current increase, alkalization of the external medium, and the expression of PAL1 coding for a key enzyme of the phenylpropanoid pathway.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Cálcio/metabolismo , Indóis/farmacologia , Piperazinas/farmacologia , Arabidopsis/genética , Transporte Biológico , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Streptomyces/química , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA