RESUMO
Enzyme therapy for celiac disease (CeD), which digests gliadin into non-immunogenic and non-toxic peptides, can be an appropriate treatment option for CeD. Here, we have investigated the effectiveness of bromelain and ficin on gliadin digestion using in vitro, such as SDS-PAGE, HPLC, and circular dichroism (CD). Furthermore, the cytotoxicity of gliadin and 19-mer peptide before and after digestion with these enzymes was evaluated using the MTT assay in the Caco-2 cell line. Finally, we examined the effect of these treatments along with Larazotide Acetate on the expression of genes involved in cell-tight junctions, such as Occludin, Claudin 3, tight junction protein-1, and Zonulin in the Caco-2 cell line. Our study demonstrated bromelain and ficin digestion effects on the commercial and wheat-extracted gliadin by SDS-PAGE, HPLC, and CD. Also, the cytotoxicity results on Caco-2 showed that toxicity of the gliadin and synthetic 19-mer peptide was decreased by adding bromelain and ficin. Furthermore, the proteolytic effects of bromelain and ficin on gliadin indicated the expression of genes involved in cell-tight junctions was improved. This study confirms that bromelain and ficin mixture could be effective in improving the symptoms of CeD.
Assuntos
Doença Celíaca , Gliadina , Humanos , Células CACO-2 , Gliadina/farmacologia , Gliadina/metabolismo , Junções Íntimas , Ficina , Bromelaínas/farmacologia , Peptídeos/farmacologiaRESUMO
Deep eutectic solvents in the extraction of plant metabolites have found many advantages, such as low toxicity, biodegradability, low cost and ease of preparation over the conventional methods. This work aims to compare natural deep eutectic solvents in extraction and optimization of oleoresin from Ferula gummosa and determining its chemical and structure properties. Box-Behnken design was applied to optimize the extraction of oleoresin from Ferula gummosa using eutectic solvents. The variables of extraction were extraction time, temperature, and ratio of eutectic solvents. Six mixtures of eutectic solvents including choline chloride/urea, acetic acid, lactic acid, formic acid, formamide and glycerol at ratios of 2:1 and 3:1 were evaluated. The highest yields were obtained for choline chloride/formic acid, choline chloride/formamide. The quadratic regression equation was set up as a predictive model with an R2 value of 0.85. The optimum condition was 6 h, 40 °C, and ratio 12.5% (w/v). No significant difference was found between the predicted and experimental yield. The main components of the oleoresin were ß-pinene (40.27%), cylcofenchen (11.93%) and α-pinene (7.53%) as characterized by gas chromatography-mass spectrometry. The chemical structure study by spectroscopy showed that no solvents remained in the oleoresin. Therefore, F. gummosa oleoresin can be explored as a novel promising natural pharmaceutical ingredient extracted with eutectic solvents.
Assuntos
Solventes Eutéticos Profundos , Ferula , Solventes/química , Extratos Vegetais/química , Colina/química , FormamidasRESUMO
Solid extraction process, using the supercritical fluid, is a modern science and technology, which has come in vogue regarding its considerable advantages. In the present article, a new and comprehensive model is presented for predicting the performance and separation yield of the supercritical extraction process. The base of process modeling is partial differential mass balances. In the proposed model, the solid particles are considered twofold: (a) particles with intact structure, (b) particles with destructed structure. A distinct mass transfer coefficient has been used for extraction of each part of solid particles to express different extraction regimes and to evaluate the process accurately (internal mass transfer coefficient was used for the intact-structure particles and external mass transfer coefficient was employed for the destructed-structure particles). In order to evaluate and validate the proposed model, the obtained results from simulations were compared with two series of available experimental data for extraction of chamomile extract with supercritical carbon dioxide, which had an excellent agreement. This is indicative of high potentiality of the model in predicting the extraction process, precisely. In the following, the effect of major parameters on supercritical extraction process, like pressure, temperature, supercritical fluid flow rate, and the size of solid particles was evaluated. The model can be used as a superb starting point for scientific and experimental applications.
Assuntos
Camomila/química , Cromatografia com Fluido Supercrítico/métodos , Extratos Vegetais/química , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/instrumentação , Modelos Teóricos , TemperaturaRESUMO
Dendritic cells (DCs) play a crucial role in the initiation of adaptive immune responses against tumor cells. We recently found that protein components of Toxoplasma gondii (T. gondii) could mature DCs efficiently. Therefore, in this study, we aimed to find the most effective protein components of T. gondii which are able to mature DCs and consequently instruct immune responses in tumor-bearing mice. Soluble tachyzoite antigens (STAgs) were fractionated by ammonium sulfate precipitation and subsequently by anion-exchange HPLC. Immature DCs (iDCs) were treated by these protein fractions and were monitored for IL-12p70 and IL-10 production. Moreover, the capacity of mature DCs (mDCs) to induce lymphocyte proliferation was investigated. Ultimately, we analyzed the ability of mDCs in instructing immune responses in tumor-bearing mice. We found that ammonium sulfate fraction one (A1) matured-DCs produced higher IL-12 level and IL-12/IL-10 ratio; therefore, this fraction was selected for further fractionation by anion-exchange HPLC. The results showed that anion-exchange HPLC fraction 14 (C14) matured-DCs secrete higher levels of IL-12p70 and IL-12p70/IL-10 ratio. Survival of the mice matured by A1 fraction increased significantly compared to other groups. Moreover, SDS-PAGE electrophoresis showed that different obtained fractions have distinct proteins based on their size. These results demonstrate that two protein fractions of T. gondii are able to mature DCs more efficient.
Assuntos
Melanoma/imunologia , Proteínas de Protozoários/imunologia , Toxoplasma/imunologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células Dendríticas/imunologia , Feminino , Interleucina-10/imunologia , Interleucina-12/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Fully mature dendritic cells (DCs) play pivotal role in inducing immune responses and converting naïve T lymphocytes into functional Th1 cells. We aimed to evaluate Listeria Monocytogenes-derived protein fractions to induce DC maturation and stimulating T helper (Th)1 immune responses.In the present study, we fractionated Listeria Monocytogenes-derived proteins by adding of ammonium sulfate in a stepwise manner. DCs were also generated from C57BL/6 mice bone marrow precursor cells. Then, the effects of protein fractions on bone marrow derived DC (BMDC) maturation were evaluated. In addition, we assessed the capacity of activated DCs to induce cytokine production and proliferation of lymphocytes.Listeria-derived protein fractions induced fully mature DCs expressing high costimulatory molecules such as CD80, CD86 and CD40. DCs that were activated by selected F3 fraction had low capacity to uptake exogenous antigens while secreted high levels of Interleukine (IL)-12. Moreover, lymphocytes cultured with activated BMDCs produced high amounts of IFN-γ and showed higher proliferation than control. Listeria derived protein fractions differently influenced DC maturation.In conclusion, Listeria protein activated-BMDCs can be used as a cell based vaccine to induce anti-tumor immune responses.
Assuntos
Proteínas de Bactérias/imunologia , Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Listeria monocytogenes/imunologia , Células Th1/imunologia , Animais , Antígenos CD/imunologia , Células da Medula Óssea/citologia , Linhagem Celular Tumoral , Células Dendríticas/citologia , Regulação da Expressão Gênica/imunologia , Camundongos , Células Th1/citologiaRESUMO
Patients undergoing nuclear medicine procedures for cancer therapy are administered radiopharmaceuticals that emit various types of radiation. Because radiation has differential delivery to and uptake by cells in tissue, radiation exposures are often highly nonuniform. Some cell populations in a tissue may contain widely different amounts of radioactivity, whereas other cell populations in the same tissue may contain no radioactivity, referred to as labeled and unlabeled cells, respectively. Furthermore, the toxicity of the radiations emitted can depend on the location of the radioactive decay within the cell (e.g., nucleus vs. cytoplasm). Therefore, the response of a given cell depends on the absorbed dose received from radiations emitted by decays within the cell (self-dose) and emitted by decays in neighboring cells (cross-dose), among other factors. Taken together, these variables make it difficult to predict the response of cell populations to radiopharmaceuticals. Accordingly, to assist in designing treatment plans for therapeutic radiopharmaceuticals, an applet software application called MIRDcell was developed. This applet models the distribution of radiopharmaceuticals in tissues, calculates the distribution of radiation dose, models responses on a cell-by-cell basis, and predicts the surviving fraction of the labeled and unlabeled cell populations. MIRDcell can be accessed at http://mirdcell.njms.rutgers.edu/.
Assuntos
Radiometria , Software , HumanosRESUMO
BACKGROUND: We have demonstrated that vaccination with pDNA encoding cysteine proteinase Type II (CPA) and Type I (CPB) with its unusual C-terminal extension (CTE) can partially protect BALB/c mice against cutaneous leishmanial infection. Unfortunately, this protection is insufficient to completely control infection without booster injection. Furthermore, in developing vaccines for leishmaniasis, it is necessary to consider a proper adjuvant and/or delivery system to promote an antigen specific immune response. Solid lipid nanoparticles have found their way in drug delivery system development against intracellular infections and cancer, but not Leishmania DNA vaccination. Therefore, undefined effect of cationic solid lipid nanoparticles (cSLN) as an adjuvant in enhancing the immune response toward leishmanial antigens led us to refocus our vaccine development projects. METHODOLOGY/PRINCIPAL FINDINGS: Three pDNAs encoding L. major cysteine proteinase type I and II (with or without CTE) were formulated by cSLN. BALB/c mice were immunized twice by 3-week interval, with cSLN-pcDNA-cpa/b, pcDNA-cpa/b, cSLN-pcDNA-cpa/b(-CTE), pcDNA-cpa/b(-CTE), cSLN, cSLN-pcDNA and PBS. Mice vaccinated with cSLN-pcDNA-cpa/b(-CTE) showed significantly higher levels of parasite inhibition related to protection with specific Th1 immune response development, compared to other groups. Parasite inhibition was determined by different techniques currently available in exploration vacciation efficacy, i.e., flowcytometry on footpad and lymph node, footpad caliper based measurements and imaging as well as lymph node microtitration assay. Among these techniques, lymph node flowcytometry was found to be the most rapid, sensitive and easily reproducible method for discrimination between the efficacy of vaccination strategies. CONCLUSIONS/SIGNIFICANCE: This report demonstrates cSLN's ability to boost immune response magnitude of cpa/cpb(-CTE) cocktail vaccination against leishmaniasis so that the average parasite inhibition percent could be increased significantly. Hence, cSLNs can be considered as suitable adjuvant and/or delivery systems for designing third generation cocktail vaccines.
Assuntos
Adjuvantes Imunológicos/administração & dosagem , Cisteína Endopeptidases/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/prevenção & controle , Lipossomos/administração & dosagem , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Animais , Cisteína Endopeptidases/genética , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Feminino , Leishmania major/genética , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Proteínas de Protozoários/genética , Vacinas Protozoárias/genética , Doenças dos Roedores/prevenção & controle , Deleção de Sequência , Células Th1/imunologiaRESUMO
Earlier generations of Leishmania vaccines have reached the third-phase of clinical trials, however none of them have shown adequate efficacy due to lack of an appropriate adjuvant. In this study, cationic solid lipid nanoparticles (cSLNs) were used to formulate three pDNAs encoding L. major cysteine proteinase type I (cpa), II (cpb) and III (cpc). BALB/c mice were immunized twice with a 3-week interval, with SLN-pcDNA-cpa/b/c, pcDNA-cpa/b/c, SLN, SLN-pcDNA and PBS. Footpad assessments, parasite burden, cytokine and antibody responses were evaluated. Mice vaccinated with SLN-pcDNA-cpa/b/c significantly (p<0.05) showed higher protection levels with specific Th1 immune response development compared to other groups. This is the first report demonstrating cSLNs as a nanoscale vehicle boosting immune response quality and quantity; in a designable trend. The nanomedical feature of this novel formulation can be applied for wide-spread use in genetic vaccination against leishmaniasis, which is currently managed only through relatively ineffectual therapeutic regimens.